我是TensorFlow的新手。我有以下图表。我得到的测试精度是90%。我想重复使用该模型。我想出来的一种方法是从学习的权重中启动我的变量(查看下面的REUSE_MODEL)。但是,当我通过模型运行测试数据集时,我现在的准确率为2.0%。
我做这件事的方式有什么问题,以及最好的方法是什么?
GRAPH BUILD AND RUN
graph = tf.Graph()
with graph.as_default():
# input data
tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_test_dataset = tf.constant(test_dataset)
layer1_weights = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, num_channels, num_kernels]))
layer1_biases = tf.Variable(tf.zeros([num_kernels]))
layer2_weights = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, num_kernels, num_kernels]))
layer2_biases = tf.Variable(tf.constant(1.0, shape=[num_kernels]))
layer3_weights = tf.Variable(tf.truncated_normal([image_size // 4 * image_size // 4 * num_kernels, num_hidden], stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))
layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))
# model
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
# reshape is of size batch_size X features_vector. We flatten the output of the layer2 to a features vector
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# training computation
logits = model(tf_train_dataset)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# predictions
train_prediction = tf.nn.softmax(logits)
test_prediction = tf.nn.softmax(model(tf_test_dataset))
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
num_steps = 1001
num_epochs = 100
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
for epoch in range(num_epochs):
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
重新使用模型
with graph.as_default():
tf_test_dataset2 = tf.constant(test_dataset)
layer1_weights2 = tf.Variable(layer1_weights.initialized_value())
layer1_biases2 = tf.Variable(layer1_biases.initialized_value())
layer2_weights2 = tf.Variable(layer2_weights.initialized_value())
layer2_biases2 = tf.Variable(layer2_biases.initialized_value())
layer3_weights2 = tf.Variable(layer3_weights.initialized_value())
layer3_biases2 = tf.Variable(layer3_biases.initialized_value())
layer4_weights2 = tf.Variable(layer4_weights.initialized_value())
layer4_biases2 = tf.Variable(layer4_biases.initialized_value())
# model
def model(data):
conv = tf.nn.conv2d(data, layer1_weights2, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases2)
conv = tf.nn.conv2d(hidden, layer2_weights2, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases2)
shape = hidden.get_shape().as_list()
# reshape is of size batch_size X features_vector. We flatten the output of the layer2 to a features vector
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights2) + layer3_biases2)
return tf.matmul(hidden, layer4_weights2) + layer4_biases2
test_prediction2 = tf.nn.softmax(model(tf_test_dataset2))
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
session.run(test_prediction2)
print('Test accuracy: %.1f%%' % accuracy(test_prediction2.eval(), test_labels))
答案 0 :(得分:1)
我认为正确的方法是保存和恢复元图,这是关于此的官方文档: https://www.tensorflow.org/api_docs/python/state_ops/exporting_and_importing_meta_graphs