我的目标是实现一个Codec
,它将提供的EasyBuf
排到消息边界,并将其解码为仅引用内容的结构,以防止不必要的复制。
看一下EasyBuf
的实现,似乎目前不可能,但也许我错过了一些东西。
以下是我正在玩的代码,对tokio-cassandra实际上是期望的:
struct V<'a> {
s: &'a [u8],
}
struct R<'a> {
b: EasyBuf,
v: Option<V<'a>>,
}
struct C;
impl Codec for C {
type In = R<'static>;
type Out = String;
fn decode(&mut self, buf: &mut EasyBuf) -> io::Result<Option<Self::In>> {
let mut r = R {
b: buf.clone(),
v: None,
};
r.v = Some(V { s: r.b.as_slice() });
Ok(Some(r))
}
fn encode(&mut self, msg: Self::Out, buf: &mut Vec<u8>) -> io::Result<()> {
Ok(())
}
}
fn main() {
let b = EasyBuf::new();
let mut r = R { b: b, v: None };
r.v = Some(V { s: r.b.as_slice() });
}
use std::fmt;
use std::io;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
#[derive(Clone)]
pub struct EasyBuf {
buf: Arc<Vec<u8>>,
start: usize,
end: usize,
}
pub struct EasyBufMut<'a> {
buf: &'a mut Vec<u8>,
end: &'a mut usize,
}
impl EasyBuf {
pub fn new() -> EasyBuf {
EasyBuf::with_capacity(8 * 1024)
}
pub fn with_capacity(cap: usize) -> EasyBuf {
EasyBuf {
buf: Arc::new(Vec::with_capacity(cap)),
start: 0,
end: 0,
}
}
fn set_start(&mut self, start: usize) -> &mut EasyBuf {
assert!(start <= self.buf.as_ref().len());
assert!(start <= self.end);
self.start = start;
self
}
fn set_end(&mut self, end: usize) -> &mut EasyBuf {
assert!(end <= self.buf.len());
assert!(self.start <= end);
self.end = end;
self
}
pub fn len(&self) -> usize {
self.end - self.start
}
pub fn as_slice(&self) -> &[u8] {
self.as_ref()
}
pub fn split_off(&mut self, at: usize) -> EasyBuf {
let mut other = EasyBuf { buf: self.buf.clone(), ..*self };
let idx = self.start + at;
other.set_start(idx);
self.set_end(idx);
return other;
}
pub fn drain_to(&mut self, at: usize) -> EasyBuf {
let mut other = EasyBuf { buf: self.buf.clone(), ..*self };
let idx = self.start + at;
other.set_end(idx);
self.set_start(idx);
return other;
}
pub fn get_mut(&mut self) -> EasyBufMut {
if Arc::get_mut(&mut self.buf).is_some() {
let buf = Arc::get_mut(&mut self.buf).unwrap();
buf.drain(..self.start);
self.start = 0;
return EasyBufMut {
buf: buf,
end: &mut self.end,
};
}
let mut v = Vec::with_capacity(self.buf.capacity());
v.extend_from_slice(self.as_ref());
self.start = 0;
self.buf = Arc::new(v);
EasyBufMut {
buf: Arc::get_mut(&mut self.buf).unwrap(),
end: &mut self.end,
}
}
}
impl AsRef<[u8]> for EasyBuf {
fn as_ref(&self) -> &[u8] {
&self.buf[self.start..self.end]
}
}
impl<'a> Deref for EasyBufMut<'a> {
type Target = Vec<u8>;
fn deref(&self) -> &Vec<u8> {
self.buf
}
}
impl<'a> DerefMut for EasyBufMut<'a> {
fn deref_mut(&mut self) -> &mut Vec<u8> {
self.buf
}
}
impl From<Vec<u8>> for EasyBuf {
fn from(vec: Vec<u8>) -> EasyBuf {
let end = vec.len();
EasyBuf {
buf: Arc::new(vec),
start: 0,
end: end,
}
}
}
impl<'a> Drop for EasyBufMut<'a> {
fn drop(&mut self) {
*self.end = self.buf.len();
}
}
/// Encoding and decoding of frames via buffers.
///
/// This trait is used when constructing an instance of `Framed`. It provides
/// two types: `In`, for decoded input frames, and `Out`, for outgoing frames
/// that need to be encoded. It also provides methods to actually perform the
/// encoding and decoding, which work with corresponding buffer types.
///
/// The trait itself is implemented on a type that can track state for decoding
/// or encoding, which is particularly useful for streaming parsers. In many
/// cases, though, this type will simply be a unit struct (e.g. `struct
/// HttpCodec`).
pub trait Codec {
/// The type of decoded frames.
type In;
/// The type of frames to be encoded.
type Out;
/// Attempts to decode a frame from the provided buffer of bytes.
///
/// This method is called by `Framed` whenever bytes are ready to be parsed.
/// The provided buffer of bytes is what's been read so far, and this
/// instance of `Decode` can determine whether an entire frame is in the
/// buffer and is ready to be returned.
///
/// If an entire frame is available, then this instance will remove those
/// bytes from the buffer provided and return them as a decoded
/// frame. Note that removing bytes from the provided buffer doesn't always
/// necessarily copy the bytes, so this should be an efficient operation in
/// most circumstances.
///
/// If the bytes look valid, but a frame isn't fully available yet, then
/// `Ok(None)` is returned. This indicates to the `Framed` instance that
/// it needs to read some more bytes before calling this method again.
///
/// Finally, if the bytes in the buffer are malformed then an error is
/// returned indicating why. This informs `Framed` that the stream is now
/// corrupt and should be terminated.
fn decode(&mut self, buf: &mut EasyBuf) -> io::Result<Option<Self::In>>;
/// A default method available to be called when there are no more bytes
/// available to be read from the underlying I/O.
///
/// This method defaults to calling `decode` and returns an error if
/// `Ok(None)` is returned. Typically this doesn't need to be implemented
/// unless the framing protocol differs near the end of the stream.
fn decode_eof(&mut self, buf: &mut EasyBuf) -> io::Result<Self::In> {
match try!(self.decode(buf)) {
Some(frame) => Ok(frame),
None => Err(io::Error::new(io::ErrorKind::Other, "bytes remaining on stream")),
}
}
/// Encodes a frame into the buffer provided.
///
/// This method will encode `msg` into the byte buffer provided by `buf`.
/// The `buf` provided is an internal buffer of the `Framed` instance and
/// will be written out when possible.
fn encode(&mut self, msg: Self::Out, buf: &mut Vec<u8>) -> io::Result<()>;
}
Codec::In
中的生命周期缺失,我认为目前无法完成此操作 - 我们必须声明'static
,这是借用检查程序的问题。EasyBuf
本身(Codec::In = EasyBuf
)来实现,然后在稍后的步骤中进行解码,例如在未来的链接中,类似于this example (usize, *const u8)
,后来在用户请求时变为&str
。答案 0 :(得分:1)
tokio-core的最新版本不包含codec
模块,已移至tokio-io。移动时,它也从bytes crate从EasyBuf
切换到BytesMut
。通过该更改,您的缓冲区将作为BytesMut
进入,它是为0复制缓冲区消耗而构建的。您可以使用split_to()
来使用缓冲区,BytesMut
将在您分割的位置之前返回pub struct PacketCodec {
pub data_todo: Option<usize>,
}
type PacketItem = Frame<PacketHeader, BytesMut, io::Error>;
impl PacketHeader {
pub fn admin_decode(buf: &mut BytesMut) -> Result<Option<PacketItem>, io::Error> {
let newline = buf[..].iter().position(|b| *b == b'\n');
if let Some(n) = newline {
let line = buf.split_to(n);
buf.split_to(1); // drop the newline itself
let data_str = match str::from_utf8(&line[..]) {
Ok(s) => s,
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "invalid string")),
};
info!("admin command data: {:?}", data_str);
let command = match data_str.trim() {
"version" => ADMIN_VERSION,
"status" => ADMIN_STATUS,
_ => ADMIN_UNKNOWN,
};
return Ok(Some(Frame::Message {
message: PacketHeader {
magic: PacketMagic::TEXT,
ptype: command,
psize: 0,
},
body: false,
}));
}
Ok(None) // Wait for more data
}
pub fn decode(buf: &mut BytesMut) -> Result<Option<PacketItem>, io::Error> {
debug!("Decoding {:?}", buf);
// Peek at first 4
// Is this a req/res
if buf.len() < 4 {
return Ok(None);
}
let mut magic_buf: [u8; 4] = [0; 4];
magic_buf.clone_from_slice(&buf[0..4]);
let magic = match magic_buf {
REQ => PacketMagic::REQ,
RES => PacketMagic::RES,
// TEXT/ADMIN protocol
_ => PacketMagic::TEXT,
};
debug!("Magic is {:?}", magic);
if magic == PacketMagic::TEXT {
debug!("admin protocol detected");
return PacketHeader::admin_decode(buf);
}
if buf.len() < 12 {
return Ok(None);
}
buf.split_to(4);
// Now get the type
let ptype = buf.split_to(4).into_buf().get_u32::<BigEndian>();
debug!("We got a {}", &PTYPES[ptype as usize].name);
// Now the length
let psize = buf.split_to(4).into_buf().get_u32::<BigEndian>();
debug!("Data section is {} bytes", psize);
Ok(Some(Frame::Message {
message: PacketHeader {
magic: magic,
ptype: ptype,
psize: psize,
},
body: true, // TODO: false for 0 psize?
}))
}
}
impl Decoder for PacketCodec {
type Item = Frame<PacketHeader, BytesMut, io::Error>;
type Error = io::Error;
fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, io::Error> {
match self.data_todo {
None => {
match PacketHeader::decode(buf)? {
Some(Frame::Message { message, body }) => {
self.data_todo = Some(message.psize as usize);
Ok(Some(Frame::Message {
message: message,
body: body,
}))
}
Some(_) => panic!("Expecting Frame::Message, got something else"),
None => Ok(None),
}
}
Some(0) => {
self.data_todo = None;
Ok(Some(Frame::Body { chunk: None }))
}
Some(data_todo) => {
let chunk_size = min(buf.len(), data_todo);
self.data_todo = Some(data_todo - chunk_size);
Ok(Some(Frame::Body { chunk: Some(buf.split_to(chunk_size)) }))
}
}
}
}
个数据,并将缓冲区的开头前进到该指针。以下是我一直在研究的服务器的tokio端口示例rustygear:
Class Customers_model extends BF_Model{
protected $table_name = 'customers';
protected $key = 'customer_id';
protected $date_format = 'datetime';