我想创建我自己的内置命名元组类型,它具有一些额外的功能。我们假设我们创建了一个类:
from collections import namedtuple
MyClass = namedtuple('MyClass', 'field1 field2')
它是不可变的,可读的和简单的。现在我可以创建MyClass的实例:
myobj = MyClass(field1 = 1, field2 = 3.0)
print(myobj.field1, myobj.field2)
我的额外要求是在创建实例时我想检查field1
是int
类型而field2
是float
。例如,如果用户尝试创建MyClass实例:
obj = MyClass(field1 = 1, field2 = 3.0) # instantiates ok
obj1 = MyClass(field1 = 'sometext', field2 = 3.0) # raises TypeError
我尝试制作一个可以验证数据类型(MyClass应该是不可变的)的自定义命名元素,例如。:
MyClass = modifiednamedtuple('MyClass', 'field1 field2', (int, float) )
但卡住了:(。namedtuple
是函数(不能是modifiednamedtuple的基类),我的元类实验失败了。
任何提示或建议?
好吧,我想出了一个可能不是"清洁"或pythonic。除了我的对象不是不可变的外,它的工作原理。如何使它们不变?有任何建议如何让它更干净和更红?这是我的代码。:
def typespecificnamedtuple(name, *attr_definitions):
def init(self, *args, **kwargs):
valid_types = dict(attr_definitions) # tuples2dict
for attr_name, value in kwargs.items():
valid_type = valid_types[attr_name]
if not isinstance(value, valid_type):
raise TypeError('Cannot instantiate class '+ self.__name__+
'. Inproper datatype for '+ attr_name + '=' + str(value)+
', expected '+str(valid_type) )
setattr(self, attr_name, value)
class_dict = {'__init__' : init, '__name__' : name}
for attr_def in attr_definitions:
class_dict[attr_def[0]] = attr_def[1] # attr_def is ('name', <type int>)
customType = type(name, (object, ), class_dict )
return customType
if __name__ == '__main__':
MyClass = typespecificnamedtuple('MyClass', ('value', int), ('value2', float) )
mc = MyClass(value = 1, value2 = 3.0)
mc.something = 1 # this assigment is possible :( how to make immutable?
print(mc.__name__, mc.value, mc.value2, mc.something)
mc1 = MyClass(value = 1, value2 = 'sometext') # TypeError exception is raised
和控制台输出。:
MyClass 1 3.0 1
Traceback (most recent call last):
File "/home/pawel/workspace/prices/prices.py", line 89, in <module>
mc1 = MyClass(value = 1, value2 = 'sometext') # TypeError exception is raised
File "/home/pawel/workspace/prices/prices.py", line 70, in init
', expected '+str(valid_type) )
TypeError: Cannot instantiate class MyClass. Inproper datatype for value2=sometext, expected <class 'float'>
答案 0 :(得分:3)
namedtuple
不是一个班级;这是一个功能。但它是一个返回类的函数。因此,您可以将namedtuple
调用的结果用作父类。
由于它是不可变的,namedtuple
初始化在__new__
而不是__init__
。
这样的事情,或许是:
MyTuple = namedtuple('MyTuple', 'field1 field2')
class MyClass(MyTuple):
def __new__(cls, field1, field2):
if not isinstance(field1, int):
raise TypeError("field1 must be integer")
# accept int or float for field2 and convert int to float
if not isinstance(field1, (int, float)):
raise TypeError("field2 must be float")
return MyTuple.__new__(cls, field1, float(field2))
答案 1 :(得分:1)
namedtuple()
使用string template生成类对象。
您可以对修改后的版本使用相同的技术;但是请使用已为您生成的代码作为基类:
import sys
from collections import OrderedDict
_typechecking_class_template = """\
from collections import namedtuple as _namedtuple
class {typename}(_namedtuple({typename!r}, {field_names!r})):
'{typename}({arg_list})'
__slots__ = ()
def __new__(_cls, {arg_list}):
'Create new instance of {typename}({arg_list})'
for name, type_ in _cls._field_types.items():
value = locals()[name]
if not isinstance(value, type_):
raise TypeError("Incorrect type {{!r}} for {{}}, expected {{!r}}".format(
type(value).__name__, name, type_.__name__))
return tuple.__new__(_cls, ({arg_list}))
"""
def typechecking_namedtuple(typename, field_names, field_types):
if isinstance(field_names, str):
field_names = field_names.replace(',', ' ').split()
field_names = list(map(str, field_names))
typename = str(typename)
class_definition = _typechecking_class_template.format(
typename = typename,
field_names = tuple(field_names),
arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
)
namespace = dict(__name__='typechecking_namedtuple_%s' % typename)
exec(class_definition, namespace)
result = namespace[typename]
result._field_types = OrderedDict(zip(field_names, field_types))
try:
module = sys._getframe(1).f_globals.get('__name__', '__main__')
result.__module__ = module
except (AttributeError, ValueError):
pass
return result
这使您可以生成新的类型检查namedtuple类:
>>> MyClass = typechecking_namedtuple('MyClass', 'field1 field2', (int, float))
>>> MyClass(42, 81.2)
MyClass(field1=42, field2=81.2)
>>> MyClass('fourtytwo', 81.2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 16, in __new__
TypeError: Incorrect type 'str' for field1, expected 'int'
>>> MyClass(42, None)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 16, in __new__
TypeError: Incorrect type 'NoneType' for field2, expected 'float'