我正在尝试从DSX Python笔记本中将pandas数据帧作为CSV写入Bluemix对象存储。我首先将数据帧保存为“本地”CSV文件。然后我有一个例程尝试将文件写入对象存储。我得到413响应 - 对象太大了。该文件只有大约3MB。这是我的代码,基于我在这里找到的JSON示例:http://datascience.ibm.com/blog/working-with-object-storage-in-data-science-experience-python-edition/
sys.path.insert(0, os.path.abspath('../../'))
sys.path.insert(1, '<your local full path>/google_appengine')
sys.path.insert(1, '<your local full path>/google_appengine/lib/yaml/lib')
if 'google' in sys.modules:
del sys.modules['google']
非常感谢任何帮助或指示。
答案 0 :(得分:5)
tutorial的这段代码片段对我来说很好(对于一个12 MB的文件)。
from io import BytesIO
import requests
import json
import pandas as pd
def put_file(credentials, local_file_name):
"""This functions returns a StringIO object containing
the file content from Bluemix Object Storage V3."""
f = open(local_file_name,'r')
my_data = f.read()
url1 = ''.join(['https://identity.open.softlayer.com', '/v3/auth/tokens'])
data = {'auth': {'identity': {'methods': ['password'],
'password': {'user': {'name': credentials['username'],'domain': {'id': credentials['domain_id']},
'password': credentials['password']}}}}}
headers1 = {'Content-Type': 'application/csv'}
resp1 = requests.post(url=url1, data=json.dumps(data), headers=headers1)
resp1_body = resp1.json()
for e1 in resp1_body['token']['catalog']:
if(e1['type']=='object-store'):
for e2 in e1['endpoints']:
if(e2['interface']=='public'and e2['region']=='dallas'):
url2 = ''.join([e2['url'],'/', credentials['container'], '/', local_file_name])
s_subject_token = resp1.headers['x-subject-token']
headers2 = {'X-Auth-Token': s_subject_token, 'accept': 'application/json'}
resp2 = requests.put(url=url2, headers=headers2, data = my_data )
print resp2
我使用以下方法创建了一个随机的pandas数据帧:
df = pd.DataFrame(np.random.randint(0,100,size=(1000000, 4)), columns=list('ABCD'))
将其保存到csv
df.to_csv('myPandasData_1000000.csv',index=False)
然后将其放到对象存储
put_file(credentials_1,'myPandasData_1000000.csv')
您可以通过单击对象库中任何对象的credentials_1
来获取insert to code -> Insert credentials
对象。