我有以下代码:
"""
Parameters
----------
image : numpy.ndarray(dtype=np.uint8)
A grayscale image represented in a numpy array.
kernel : numpy.ndarray
A kernel represented in a numpy array of size (k, k) where k is an odd
number strictly greater than zero.
Returns
-------
output : numpy.ndarray(dtype=np.float64)
The output image. The size of the output array should be smaller than
the original image size by k-1 rows and k-1 columns, where k is the
size of the kernel.
"""
#kernel is of shape (K x K), square
K = kernel.shape[0]
#create a result array with K+1 rows and columns
result = np.zeros([image.shape[0] - K + 1, image.shape[1] - K + 1], dtype=np.float64)
#loop through the image
for r in range(result.shape[0]):
for c in range(result.shape[1]):
avg = 0 #running average for this image pixel
#loop through the kernel
for kr in range(kernel.shape[0]):
for kc in range(kernel.shape[1]):
avg += image[r][c] * kernel[kr][kc]
print avg #values are as expected
print avg #values are rounded (i.e. no decimals)
result[r][c] = avg
return result
我试图执行Cross Correlation in 2D using this formula。我无法弄清楚为什么我的号码被莫名其妙地四舍五入。我对Python有点新鲜,所以也许我做错了什么。
我很感激所有的帮助。
编辑:我希望我的输出等于以下cv2函数调用的相同输出:
GAUSSIAN_KERNEL = np.array([[ 1, 4, 6, 4, 1],
[ 4, 16, 24, 16, 4],
[ 6, 24, 36, 24, 6],
[ 4, 16, 24, 16, 4],
[ 1, 4, 6, 4, 1]], dtype=np.float64) / 256.
N = GAUSSIAN_KERNEL.shape[0] // 2
tested = a4.crossCorrelation2D(self.testImage, GAUSSIAN_KERNEL)
goal = cv2.filter2D(self.testImage, cv2.CV_64F, GAUSSIAN_KERNEL)[N:-N, N:-N]
assert np.testing.assert_array_equal(tested, goal, "Arrays were not equal")
答案 0 :(得分:1)
请注意,在此循环中提取代码:
avg = 0
for kr in range(kernel.shape[0]):
for kc in range(kernel.shape[1]):
avg += image[r][c] * kernel[kr][kc]
avg将总是加起来[r] [c],因为你正在做
image[r][c] * kernel[0][0] + image[r][c] * kernel[0][1] + image[r][c] * kernel[0][2]...
等于
image[r][c] * (kernel[0][0] + kernel[0][1] + kernel[0][2]...)
等于
image[r][c] * sum-of-all-kernel-elements
等于
image[r][c] * 1.0
正确的循环应该是这样的:
for r in range(result.shape[0]):
for c in range(result.shape[1]):
avg = 0.0
for kr in range(kernel.shape[0]):
for kc in range(kernel.shape[1]):
avg += kernel[kr][kc] * image[r+kr][c+kc]
result[r][c] = np.uint(avg)
我还没有测试过我的代码,但我认为你可能只需要很小的调整