从具有相同地址的i2c传感器读取值

时间:2017-02-09 01:19:46

标签: arduino i2c

我有4个SingleTact电容式传感器,每个传感器的i2c地址为0x04。我想找到传感器的平均值,以制作操纵杆。但是我不确定如何为每个传感器分配它自己的地址,因为它们都具有相同的地址,因为它们是相同的传感器。我有一个初始代码,但这只适用于一个传感器,因为它只有一个i2c地址字节。我已经使用在线教程将所有SDA和SCL线连接在一起,并包含了上拉电阻。

#include <Wire.h>
#define initializetime 4
byte serialToPCBuffer[77];
byte serialToPCBufferIndex = 0;

int data[4];
int databuffer[4][initializetime] = {0,0,0,0,0,0,0,0,0,0,0,0};
int base[4] = {0,0,0,0};
int ArduinoToPCBuffer[4] = {1000,2000,3000,4000};
byte outgoingI2CBuffer[32];
unsigned long timeStamp_;

void setup() {
  int i;
  Wire.begin();
  //TWBR = 12;
  Serial.begin(57600);
  Serial.flush();
  initializeSensors();

  while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB port only
  }
  Serial.println("PPS UK: SingleTact sensor value in PSI. \n(resembles PC executable display)");
  Serial.println("Refer manual for any other calculation.");
  Serial.println("----------------------------------------");  
}    

void loop(){
  byte i2cAddress = 0x04; // Slave address (SingleTact), default 0x04
  int data = readDataFromSensor(i2cAddress);
  Serial.print("I2C Sensor Data:");
  Serial.print(data);    
  Serial.print("\n");
  delay(100); // Change this if you are getting values too quickly 
}

int readDataFromSensor(int address)
{
  byte i = 0;
  byte i2cPacketLength = 6;
  byte outgoingI2CBuffer[3];
  byte incomingI2CBuffer[6];

  outgoingI2CBuffer[0] = 0x01;
  outgoingI2CBuffer[1] = 128;
  outgoingI2CBuffer[2] = i2cPacketLength;

  Wire.beginTransmission(address);
  Wire.write(outgoingI2CBuffer,3);
  byte error = Wire.endTransmission();
  if (error != 0) return -1;
  Wire.requestFrom(address,i2cPacketLength);

  int incomeCount =0;
  while(incomeCount < i2cPacketLength)
  {
    if(Wire.available())
    {
    incomingI2CBuffer[incomeCount] = Wire.read();
    incomeCount++;
    }
    else
    {
    delay(1);
    }
  }
  if(serialToPCBuffer[4] == 0x00 && serialToPCBuffer[5] == 0xFE)
  {
    serialToPCBuffer[5] = 0xFF;
  }

  int datafromi2c = serialToPCBuffer[4]*256+serialToPCBuffer[5]-base[address-5];

  if(datafromi2c<21)
    datafromi2c = 0;

  return datafromi2c;
}

void initializeSensors()
{
  for(int k = 0;k<4;k++)
  {
    databuffer[k][0] = readDataFromSensor(k+5);
    delay(10);
    databuffer[k][1] = readDataFromSensor(k+5);
    delay(10);
    databuffer[k][2] = readDataFromSensor(k+5);
    delay(10);
    databuffer[k][3] = readDataFromSensor(k+5);
    delay(10);
    base[k] = (databuffer[k][0] + databuffer[k][1] + databuffer[k][2] +     databuffer[k][3])/3;
  }
}

感谢您的任何建议。

3 个答案:

答案 0 :(得分:5)

您应该阅读此设备的手册,here。它在界面描述中说,

  

多个传感器接口可以连接到单个I2C总线。该   可以配置各个传感器接口的总线地址   通过I2C接口写入所需的地址值(4到127)   通过I2C写操作注册地址0。个人变化   PC和Arduino示例支持传感器I2C地址。

所以你必须

  1. 插入第一个传感器
  2. 将地址(例如0x41)写入此设备的寄存器0
  3. 拔下传感器
  4. 对所有使用不同地址的传感器重复1-2-3
  5. 然后每个传感器都会回复您设置的地址。

    请注意

      

    由于接口板将始终响应地址0x04,因此   必须考虑为SingleTact保留地址。多重的地方   然后将SingleTact接口连接到同一I2C总线   地址0x04必须被视为无效

    所以,即使在这种情况下,RTFM建议也是最重要的建议......

答案 1 :(得分:0)

您也可以使用I2C多路复用器。它们有自己的I2C地址,可以在自己的总线(广播域)上枚举四个传感器,以便可以在它们之间切换。您的编程需要依次明确选择每个传感器并跟踪它正在读取的传感器。切换后,I2C流量只会传递到选定的设备。当您运行额外布线时,这最适用于星型拓扑中的一组传感器。

我会更进一步,并说你甚至可以使用继电器来切换这些进出,或者是OR / NAND门。

答案 2 :(得分:-2)

您需要使用卡尔曼滤镜

    #include "Wire.h"                      // i2c library
    #include "BMP085.h"                   // bmp085 library, download from url link (1)
    #include "Tone.h"                      // tone library, download from url link (3)
    #include "stdlib.h"                    // we need that to use dtostrf() and convert float to string
    #include "stdarg.h"

    #define UART_SPEED  9600
    short SPEAKER_PIN1 = 11;               // Speaker output -
    short SPEAKER_PIN2 = 12;               // Speaker output +
    short LED_PIN = 13;

    Tone speaker1, speaker2;
    BMP085   bmp085 = BMP085();            // BMP085 sensor

    const float SEA_LEVEL_PRESSURE = 101325;    // Pressure at sea level (Pa)
    const float KF_VAR_MEASUREMENT = 0.1;       // Variance of pressure measurement noise.
    const float KF_VAR_ACCEL = 0.75;             // Variance of pressure acceleration noise input.

    float CLIMB_TONE2_MULT;
    float SINK_TONE2_MULT;

    float   kf_x_abs,
            kf_x_vel,
            kf_p_abs_abs,
            kf_p_abs_vel,
            kf_p_vel_vel,
            kf_var_accel;

    #define VARIOS_LEN  5
    int varios[VARIOS_LEN];
    int varios_pos = 0, varios_sum = 0;

    void p(char *fmt, ... ){
        char tmp[128]; // resulting string limited to 128 chars
        va_list args;
        va_start (args, fmt );
        vsnprintf(tmp, 128, fmt, args);
        va_end (args);
        Serial.print(tmp);
    }

    void kf_reset(float abs_value, float vel_value) {
        kf_x_abs = abs_value;
        kf_x_vel = vel_value;
        kf_p_abs_abs = 1000000000;
        kf_p_abs_vel = 0;
        kf_p_vel_vel = KF_VAR_ACCEL;
        kf_var_accel = KF_VAR_ACCEL;

        varios_sum = 0;
        for (int i = 0; i < VARIOS_LEN; i++) varios[i] = 0;
        varios_pos = 0;
    }

    void setup() {
        Serial.begin(UART_SPEED);            // set up arduino serial port
        Wire.begin();                        // lets init i2c protocol
        speaker1.begin(SPEAKER_PIN1);        // piezo speaker output -
        speaker2.begin(SPEAKER_PIN2);        // piezo speaker output +
        digitalWrite(SPEAKER_PIN2, LOW);

        bmp085.init(MODE_ULTRA_HIGHRES, SEA_LEVEL_PRESSURE, false);

        kf_reset(SEA_LEVEL_PRESSURE, 0);

        CLIMB_TONE2_MULT = pow(2, 9/12);
        SINK_TONE2_MULT = pow(2, 1/12);

        welcome();      //everything is ready, play "welcome" sound
    }

    void welcome() {
        speaker1.play(300, 50);     // (note, duration)
        delay(100);
        speaker2.play(300, 50);     // (note, duration)
        delay(100);
        Serial.println("Vario is ready");
    }

    float pressure2altitude(float pressure) {
        return (float)44330 * (1 - pow(((float)(pressure)/SEA_LEVEL_PRESSURE), 0.190295));
    }

    float last_time = 0;
    void update_pressure() {
        long pressure;
        bmp085.calcTruePressure(&pressure);

        float time = millis();
        float dt = (time - last_time) / 1000;
        last_time = time;

        /* Kalman Filter code */
        kf_x_abs += kf_x_vel * dt;

        kf_p_abs_abs += (float)2 * dt * kf_p_abs_vel  +  dt * dt * kf_p_vel_vel  +  kf_var_accel * dt * dt * dt * dt / (float)4;
        kf_p_abs_vel +=                                       dt * kf_p_vel_vel  +  kf_var_accel * dt * dt * dt / (float)2;
        kf_p_vel_vel +=                                                          +  kf_var_accel * dt * dt;

        // Update state covariance. The last term mixes in acceleration noise.
        float y = pressure - kf_x_abs;                              // Innovation.
        float s_inv = 1.0 / (kf_p_abs_abs + KF_VAR_MEASUREMENT);    // Innovation precision.
        float k_abs = kf_p_abs_abs * s_inv;                         // Kalman gain
        float k_vel = kf_p_abs_vel * s_inv;

        // Update state estimate.
        kf_x_abs += k_abs * y;
        kf_x_vel += k_vel * y;

        // Update state covariance.
        kf_p_vel_vel -= kf_p_abs_vel * k_vel;
        kf_p_abs_vel -= kf_p_abs_vel * k_abs;
        kf_p_abs_abs -= kf_p_abs_abs * k_abs;
    }

    int avg_vario() {
        float altitude = pressure2altitude(kf_x_abs);
        int vario = (int)((altitude - pressure2altitude(kf_x_abs - kf_x_vel)) * 100);

        varios_sum += vario;
        varios_sum -= varios[varios_pos];
        varios[varios_pos] = vario;

        if (++varios_pos == VARIOS_LEN) varios_pos = 0;
        return varios_sum / VARIOS_LEN;
    }


    int CLIMB_RATE_START = 25,
        SINK_RATE_START  = -80;

    int loop_id = 0;
    unsigned long next_signal_time = 0;
    void loop() {
        update_pressure();
        int vario = avg_vario();

        unsigned long time = millis();
        if (time >= next_signal_time) {
            if (vario > CLIMB_RATE_START) {
                long beep_period = 350 - vario / 2;
                if (beep_period < 20) beep_period = 20;

                int silence_period = beep_period / 16;
                int tone = 1300 + vario;
                if (tone > 2300) tone = 2300;

                next_signal_time = time + beep_period + silence_period;
                speaker1.play(tone, beep_period);

                Serial.print("CLIMB  beep:");
                Serial.print(beep_period);
                Serial.print("    silence:");
                Serial.print(silence_period);
                Serial.print("    vario: ");
                Serial.println(vario);
            } else if (vario < SINK_RATE_START) {
    //            int beep_period = 350 * 50 / (-vario);
    //            int silence_period = beep_period / 5;
                int beep_period = 350 + vario / 2;
                if (beep_period < 20) beep_period = 20;
                int silence_period = beep_period / 16;
                int tone = 1000 + vario;
                if (tone < 300) tone = 300;

                next_signal_time = time + beep_period + silence_period;
                speaker1.play(tone, beep_period);     // (note, duration)

                Serial.print("SINK  beep:");
                Serial.print(beep_period);
                Serial.print("    silence:");
                Serial.print(silence_period);
                Serial.print("    vario: ");
                Serial.println(vario);
            }
        }

        loop_id++;
        if ((loop_id % 10) == 0) {
            Serial.print("vario: ");
            Serial.println(vario);
        }

        if ((loop_id % 10) == 0) {
            digitalWrite(LED_PIN, LOW);
        }
        if ((loop_id % 10) == 5) {
            digitalWrite(LED_PIN, HIGH);
        }
    }