我正在尝试过滤日期列表,仅包含一年一次的日期,这会在每个包含日期重置。
在下表中,我只想过滤掉include=1
的行(本例中我手动创建了include
列)。
仔细观察:
id=10
已包含在内,因为距离id=1
还有一年多的时间,id=9
还没有。{/ li>
id=22
已包含在内,因为距离id=10
已超过一年,id=21
尚未发布。表格,显然按testdate
升序排序:
| id | testdate | include |
| | | |
| | | (I want |
| | | this |
| | | column) |
|:--:|:----------:|:-------:|
| 1 | 2008-02-26 | 1* |
| 2 | 2008-03-07 | 0 |
| 3 | 2008-04-03 | 0 |
| 4 | 2008-04-25 | 0 |
| 5 | 2008-07-23 | 0 |
| 6 | 2008-10-09 | 0 |
| 7 | 2008-10-28 | 0 |
| 8 | 2009-01-14 | 0 |
| 9 | 2009-01-28 | 0 |
| 10 | 2009-05-19 | 1* |
| 11 | 2009-06-05 | 0 |
| 12 | 2009-06-05 | 0 |
| 13 | 2009-06-26 | 0 |
| 14 | 2009-07-15 | 0 |
| 15 | 2009-07-15 | 0 |
| 16 | 2009-08-18 | 0 |
| 17 | 2009-08-18 | 0 |
| 18 | 2009-09-08 | 0 |
| 19 | 2009-09-25 | 0 |
| 20 | 2010-03-19 | 0 |
| 21 | 2010-04-06 | 0 |
| 22 | 2010-06-30 | 1* |
| 23 | 2010-10-07 | 0 |
| 24 | 2010-10-21 | 0 |
| 25 | 2010-10-30 | 0 |
| 26 | 2010-12-10 | 0 |
| 27 | 2011-03-04 | 0 |
| 28 | 2011-05-11 | 0 |
| 29 | 2012-03-08 | 1* |
| 30 | 2012-03-23 | 0 |
| 31 | 2012-09-13 | 0 |
| 32 | 2013-03-21 | 1* |
| 33 | 2014-10-08 | 1* |
-----------------------------
我尝试使用dplyr
库:
# calculate interval
mutate(interval = as.double(difftime(testdate,lag(testdate), units = 'days'))) %>%
# accumulate interval in days
mutate(interval_cum = if_else(is.na(interval), -1, interval + lag(interval))) %>%
mutate(interval_cum2 = if_else(lag(interval) > 365, 0, interval_cum)) %>%
# filter out first row and all relevant accumulated intervals
mutate(include = if_else(row_number(testdate) == 1 | interval > 365 | interval_cum == -1 | interval_cum2 > 365, 1, 0, 0))
但这会遗漏id的10,22和32,因为我无法迭代多行。有没有人知道有效的R方式来实现这个目标?
R的原始数据输入:
structure(list(testdate = structure(c(13935, 13945, 13972, 13994,
14083, 14161, 14180, 14258, 14272, 14383, 14400, 14400, 14421,
14440, 14440, 14474, 14474, 14495, 14512, 14687, 14705, 14790,
14889, 14903, 14912, 14953, 15037, 15105, 15407, 15422, 15596,
15785, 16351), class = "Date"), include = c(1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1)), .Names = c("testdate", "include"), row.names = c(NA,
-33L), class = c("tbl_df", "tbl", "data.frame"))
答案 0 :(得分:4)
start_date将包含循环后要包含的日期的向量:
start_date <- datum$testdate[1]
for (x in datum$testdate) {
check_new <- (start_date[length(start_date)] + 365)
if (x > check_new) {
start_date <- c(start_date, x)
}
}
答案 1 :(得分:3)
#Calculate difference in days between rows
difference = df$testdate - df$testdate[1]
#First values >365 signifies start of a new year.
#For other values subtract the first greatest value which is greater than 365
#Repeat until all values are less than 365
while (max(difference) > 365){
difference[which(difference > 365)] = difference[which(difference > 365)] - difference[which(difference > 365)][1]
}
#0 value in difference are the indices you want to extract from df
df[difference == 0,]
或者使用像这样的自定义函数
identify_new_year = function(x){
indices = integer(0)
start = x[1]
ind = 1
indices[ind] = ind
for (i in 2:length(x)){
if (as.numeric(x[i] - start >= 365)){
ind = ind + 1
indices[ind] = i
start = x[i]
}
}
return(indices)
}
identify_new_year(df$testdate)
#[1] 1 10 22 29 32 33