我想通过采用具有1000个条目的列表的交叉积来获取具有100万行并且从其每行生成1000行的数据帧的每一行,从而生成具有10亿行的数据帧。有效地做到这一点的最佳方法是什么。 我已尝试广播列表,然后在映射数据帧的每一行时使用它。但这似乎花了太多时间。
val mappedrdd = validationDataFrames.map(x => {
val cutoffList : List[String] = cutoffListBroadcast.value
val arrayTruthTableVal = arrayTruthTableBroadcast.value
var listBufferRow: ListBuffer[Row] = new ListBuffer()
for(cutOff <- cutoffList){
val conversion = x.get(0).asInstanceOf[Int]
val probability = x.get(1).asInstanceOf[Double]
var columnName : StringBuffer = new StringBuffer
columnName = columnName.append(conversion)
if(probability > cutOff.toDouble){
columnName = columnName.append("_").append("1")
}else{
columnName = columnName.append("_").append("0")
}
val index:Int = arrayTruthTableVal.indexOf(columnName.toString)
var listBuffer : ListBuffer[String] = new ListBuffer()
listBuffer :+= cutOff
for(i <- 1 to 4){
if((index + 1) == i) listBuffer :+= "1" else listBuffer :+= "0"
}
val row = Row.fromSeq(listBuffer)
listBufferRow = listBufferRow :+ row
}
listBufferRow
})
答案 0 :(得分:2)
根据您的火花版本,您可以:
Spark 2.1.0
将列表添加为列并展开。一个简化的例子:
val df = spark.range(5)
val exploded = df.withColumn("a",lit(List(1,2,3).toArray)).withColumn("a", explode($"a"))
df.show()
+---+---+
| id| a|
+---+---+
| 0| 1|
| 0| 2|
| 0| 3|
| 1| 1|
| 1| 2|
| 1| 3|
| 2| 1|
| 2| 2|
| 2| 3|
| 3| 1|
| 3| 2|
| 3| 3|
| 4| 1|
| 4| 2|
| 4| 3|
+---+---+
您可以这样做:
def time[R](block: => R): Long = {
val t0 = System.currentTimeMillis()
block // call-by-name
val t1 = System.currentTimeMillis()
t1 - t0
}
time(spark.range(1000000).withColumn("a",lit((0 until 1000).toArray)).withColumn("a", explode($"a")).count())
在16核计算机上花了5.41秒,内存充足,默认并行度为60。
<强>&LT; Spark 2.1.0
您可以定义一个简单的UDF。
val xx = (0 until 1000).toArray.toSeq // replace with your list but turn it to seq
val ff = udf(() => {xx})
time(spark.range(1000000).withColumn("a",ff()).withColumn("a", explode($"a")).count())
与上述8.25秒相同的服务器