我试图通过Keras(theano后端)的一些练习来了解CNN。我无法使用下面的模型(错误:AttributeError:' Convolution2D'对象没有属性' get_shape')。该数据集是连接在一起的MNIST数据的图像(28 * 28),最多五个图像。因此输入形状应为1,28,140(灰度= 1,高度= 28,宽度= 28 * 5)
目标是预测数字的顺序。谢谢!!
batch_size = 128
nb_classes = 10
nb_epoch = 2
img_rows =28
img_cols=140
img_channels = 1
model_input=(img_channels, img_rows, img_cols)
x = Convolution2D(32, 3, 3, border_mode='same')(model_input)
x = Activation('relu')(x)
x = Convolution2D(32, 3, 3)(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(0.25)(x)
conv_out = Flatten()(x)
x1 = Dense(nb_classes, activation='softmax')(conv_out)
x2 = Dense(nb_classes, activation='softmax')(conv_out)
x3 = Dense(nb_classes, activation='softmax')(conv_out)
x4 = Dense(nb_classes, activation='softmax')(conv_out)
x5 = Dense(nb_classes, activation='softmax')(conv_out)
lst = [x1, x2, x3, x4, x5]
model = Sequential(input=model_input, output=lst)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(dataset, data_labels, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1)
答案 0 :(得分:4)
问题出在输入层。进行以下更改:
model_input=Input(shape=(img_channels, img_rows, img_cols))
如果您的image_dim_ordering
为th
。从Input
导入keras.layers
图层。
我还注意到有多个输出。所以你需要使用Function模型而不是Sequential。只需将其更改为:
model = Model(input=model_input, output=lst)
从Model
导入keras.models
。