我有以下数据集,其中三列包含日期。
<form (ngSubmit)="onSubmit()" #loginForm="ngForm" >
...
</form>
如果t1或t2与hire_date之间的差异介于[395,500]
之间,我想执行if else语句,使得df1 $ com为1以下if_else语句几乎让我在那里,但是NA把它搞得一团糟。有什么想法吗?
library(dplyr)
set.seed(45)
df1 <- data.frame(hire_date = sample(seq(as.Date('1999/01/01'), as.Date('2000/01/01'), by="week"), 10),
t1 = sample(seq(as.Date('2000/01/01'), as.Date('2001/01/01'), by="week"), 10),
t2 = sample(seq(as.Date('2000/01/01'), as.Date('2001/01/01'), by="day"), 10))
#this value is actually unknown
df1[10,2] <- NA
hire_date t1 t2
1 1999-08-20 2000-05-13 2000-02-17
2 1999-04-23 2000-11-11 2000-04-27
3 1999-03-26 2000-04-15 2000-08-01
4 1999-05-07 2000-06-03 2000-08-29
5 1999-04-30 2000-05-27 2000-11-19
6 1999-04-09 2000-12-30 2000-01-26
7 1999-03-12 2000-12-23 2000-12-07
8 1999-06-25 2000-02-12 2000-09-26
9 1999-02-26 2000-05-06 2000-08-23
10 1999-01-01 <NA> 2000-03-18
答案 0 :(得分:2)
您可以使用dplyr::case_when
代替嵌套if_else
语句。它可以让您轻松控制如何对待NA
。而且dplyr::between
也会清理你的日期比较。
df1 %>%
mutate(com = case_when(
is.na(t1) | is.na(t2) ~ 999, # or however you want to treat NA cases
between(t1 - hire_date, 395, 500) ~ 1,
between(t2 - hire_date, 395, 500) ~ 1,
TRUE ~ 0 # neither range is between 395 and 500
))
#> hire_date t1 t2 com
#> 1 1999-08-20 2000-05-13 2000-02-17 0
#> 2 1999-04-23 2000-11-11 2000-04-27 0
#> 3 1999-03-26 2000-04-15 2000-08-01 1
#> 4 1999-05-07 2000-06-03 2000-08-29 1
#> 5 1999-04-30 2000-05-27 2000-11-19 0
#> 6 1999-04-09 2000-12-30 2000-01-26 0
#> 7 1999-03-12 2000-12-23 2000-12-07 0
#> 8 1999-06-25 2000-02-12 2000-09-26 1
#> 9 1999-02-26 2000-05-06 2000-08-23 1
#> 10 1999-01-01 <NA> 2000-03-18 999