我有以下数据框:
dff <- structure(list(`MCI ID` = c("070405344", "230349820", "260386435","370390587", "380406805", "391169282", "440377986", "750391394","890373764", "910367024"), `123a_1` = structure(c(16672, 16372,16730, 16688, 16700, 16783, 16709, 17033, 16786, 16675), class = "Date"),`123a_2` = structure(c(17029, 16422, 17088, 17036, 17057,17140, 17072, 17043, 17141, 17038), class = "Date"), `123a_3` = structure(c(NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, NA_real_, NA_real_), class = "Date"), `123a_4` = structure(c(NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, NA_real_, NA_real_), class = "Date"), `123a_5` = structure(c(NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, NA_real_, NA_real_), class = "Date"), max123a = structure(c(17029,16422, 17088, 17036, 17057, 17140, 17072, 17043, 17141, 17038), class = "Date")), .Names = c("MCI ID", "123a_1", "123a_2","123a_3", "123a_4", "123a_5", "max123a"), row.nam... <truncated>
我已经为123a_1
到123a_5
的每一行中的最大一列提供了一列。为此,我能够使用:
dff <- mutate(dff, max123a = pmax(`123a_1`, `123a_2`, `123a_3`, `123a_4`, `123a_5`, na.rm = T))
然而,现在我需要每行的第二大。这假定NA
到123a_3
中可能存在123a_5
以外的数据。理想情况下,我喜欢dplyr解决方案,因此我可以将两个命令组合在一起,但我会采取任何措施。
答案 0 :(得分:2)
dplyr
和tidyr
:
library(dplyr)
library(tidyr)
dff %>%
gather(var, val, 2:6) %>%
group_by(`MCI ID`) %>%
summarise(max2 = max(val[val != max(val, na.rm = TRUE)], na.rm = TRUE)) %>%
left_join(dff, .)
这导致:
MCI ID 123a_1 123a_2 123a_3 123a_4 123a_5 max123a max2
1 070405344 2015-08-25 2016-08-16 <NA> <NA> <NA> 2016-08-16 2015-08-25
2 230349820 2014-10-29 2014-12-18 <NA> <NA> <NA> 2014-12-18 2014-10-29
3 260386435 2015-10-22 2016-10-14 <NA> <NA> <NA> 2016-10-14 2015-10-22
4 370390587 2015-09-10 2016-08-23 <NA> <NA> <NA> 2016-08-23 2015-09-10
5 380406805 2015-09-22 2016-09-13 <NA> <NA> <NA> 2016-09-13 2015-09-22
6 391169282 2015-12-14 2016-12-05 <NA> <NA> <NA> 2016-12-05 2015-12-14
7 440377986 2015-10-01 2016-09-28 <NA> <NA> <NA> 2016-09-28 2015-10-01
8 750391394 2016-08-20 2016-08-30 <NA> <NA> <NA> 2016-08-30 2016-08-20
9 890373764 2015-12-17 2016-12-06 <NA> <NA> <NA> 2016-12-06 2015-12-17
10 910367024 2015-08-28 2016-08-25 <NA> <NA> <NA> 2016-08-25 2015-08-28
你可以按如下方式一起做所有事情:
dff %>%
gather(var, val, 2:6) %>%
group_by(`MCI ID`) %>%
summarise(max2 = max(val[val != max(val, na.rm = TRUE)], na.rm = TRUE)) %>%
left_join(dff,.) %>%
mutate(max123a = pmax(`123a_1`, `123a_2`, `123a_3`, `123a_4`, `123a_5`, na.rm = TRUE))
基础R的解决方案:
dff$max2 <- apply(dff[2:6], 1, function(x) rev(sort(x))[2])
答案 1 :(得分:1)
我们可以使用tidyverse
library(tidyverse)
dff %>%
summarise_each(funs(rev(sort(.))[2]))