PIG-使用python UDF(窗口函数)按组计算记录之间的差异

时间:2017-02-06 06:21:30

标签: python apache-pig window-functions udf enumerate

我正在尝试按组计算记录之间的差异,并且还包括按行分组的行数。这可以使用窗口函数在HIVE中使用滞后和行号函数来完成。尝试使用PIG和python UDF重新创建它。

在下面的示例中,我需要为每个名称从1重新开始行号,并为新月(新记录)增加。另外,我需要每个名字的上个月余额差异。

  

输入数据

name    month   balance
A   1   10
A   2   5
A   3   15
B   2   20
B   3   10
B   4   45
B   5   50
  

输出数据

name    month   balance row_number  balance_diff
A   1   10  1   0
A   2   5   1   -5
A   3   15  3   10
B   2   20  1   0
B   3   10  2   -10
B   4   45  3   35
B   5   50  4   5

如何使用PIG和python UDF执行此操作?以下是我的尝试。

  

PIG

output = foreach (group input by (name)) {
    sorted = order input BY month asc;
    row_details= myudf.rownum_and_diff(sorted.(month, balance));
    generate flatten (sorted), flatten (row_details));
    };
  

Python UDF

def row_num(mth):
    return [x+1 for x,y in enumerate (mth)]

def diff(bal, n=1):
    return [x-y if (x is not None and y is not None) else 0.0 \
        for x,y in zip(bal, [:n] + bal)]

@outputSchema('udfbag:bag{udftuple:tuple(row_number: int, balance_diff: int)}')

def row_metrics(mthbal):
    mth, bal = zip(*mthbal)
    row_number = row_num(mth)
    balance_diff = diff(bal)
    return zip(row_number, balance_diff)

我的python函数有效。但是,一旦我将结果导入PIG,我在组合两个包(sorted和row_detail)时遇到了麻烦。非常感谢任何帮助。

我也看到PIG中的枚举函数用行号做我想做的事情。但是,作为学习PIG的一部分,我正在寻找使用python UDF的解决方案。

2 个答案:

答案 0 :(得分:0)

试试这个。

Python UDF:

def row_num(mth):
    return [x+1 for x,y in enumerate (mth)]

def diff(bal, n=1):
    return [0]+[x-y for x,y in zip(bal[n:],bal[:-n])]


@outputSchema('udfbag:bag{udftuple:tuple(name: chararray, mth: int, row_number: int, balance_diff: int)}')

def row_metrics(mthbal):
    name, mth, bal = zip(*mthbal)
    row_number = row_num(mth)
    balance_diff = diff(bal)
    return zip(name,mth,row_number, balance_diff)

Pig Script:

register 'myudf.py' using jython as myudf;
inpdat = load 'input.dat' using PigStorage(',') as (name:chararray, month:int, balance:int);

outdat = foreach (group inpdat by name) {
    sorted = order inpdat BY month asc;
    row_details = myudf.row_metrics(sorted);
    generate flatten (row_details);
    };

dump outdat;

答案 1 :(得分:0)

在我的案例中使用piggybank的缝合功能。有兴趣了解其他任何方法。

REGISTER /mypath/piggybank.jar;
define Stitch org.apache.pig.piggybank.evaluation.Stitch;

input = load 'input.dat' using PigStorage(',') as (name:chararray, month:int, balance:int);

output = FOREACH (group input by name) { 
sorted = ORDER input by month asc; 
udf_fields = myudf.row_metrics(sorted.(month, balance));
generate flatten(Stitch(sorted,udf_fields)) as (name, month, balance, row_number, balance_diff);
};