目标:我正在尝试在镶木地板文件上运行查询[从S3读取],然后将其作为单个制表符分隔的文本文件写在另一个S3存储桶中。所有这些都是在亚马逊的EMR集群上运行的spark应用程序中完成的。
我已经阅读了StackOverflow上的其他类似问题,但无济于事。
//Read parquet file
final Dataset<Row> df = spark.read().parquet(fileName)
//Register temp table for convinience
df.registerTempTable(tableName)
//Valid SQL query string - Verified using data bricks on the same parquet file
final String queryString = //SQL String
//Result of running sql query on parquet file
final Dataset<Row> result = spark.sql(queryString)
//Check if result is null - result is NOT NULL
final JavaRDD<Row> rowJavaRDD = result.toJavaRDD()
//Check if rowJavaRDD is null - rowJavaRDD is NOT NULL
//Coalesce and write to a text file
rowJavaRDD.map(r -> r.mkString("\t")).coalesce(1).saveAsTextFile(savePath)
但是我在rowJavaRDD.map(r -> r.mkString("\t")).coalesce(1).saveAsTextFile(savePath)
我也试过使用broadcast,但是没有做任何事情。尝试没有合并,但仍然得到相同的错误。
我检查过savePath是否有效且没有S3权限问题
我尝试在同一镶木地板文件上使用scala在./spark-shell
本地执行相同的操作并且工作正常:/
在EMR群集上运行spark 2.0.2。 [版本2.1在其他方面给出了classCastException - 因此更新是一个更大的麻烦]
任何帮助都将不胜感激。
StackTrace如下:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 in stage 38.0 failed 4 times, most recent failure: Lost task
7.3 in stage 38.0 (TID 13586, ip-10-30-1-150.ec2.internal): java.lang.NullPointerException
at org.apache.spark.sql.execution.vectorized.OnHeapColumnVector.getInt(OnHeapColumnVector.java:231)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$13$$anonfun$apply$7.apply$mcV$sp(PairRDDFunctions.scala:1203)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$13$$anonfun$apply$7.apply(PairRDDFunctions.scala:1203)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$13$$anonfun$apply$7.apply(PairRDDFunctions.scala:1203)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1348)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$13.apply(PairRDDFunctions.scala:1211)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1$$anonfun$13.apply(PairRDDFunctions.scala:1190)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1906)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1219)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1161)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1161)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1161)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply$mcV$sp(PairRDDFunctions.scala:1064)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1030)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1030)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1030)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply$mcV$sp(PairRDDFunctions.scala:956)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:956)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:956)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:955)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply$mcV$sp(RDD.scala:1459)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1438)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1438)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1438)
at org.apache.spark.api.java.JavaRDDLike$class.saveAsTextFile(JavaRDDLike.scala:549)
at org.apache.spark.api.java.AbstractJavaRDDLike.saveAsTextFile(JavaRDDLike.scala:45)
相关链接
答案 0 :(得分:0)
正如您自己提供的第一个相关链接(NPE saveAsTextFile)中所提到的,当您调用saveAsTextFile()时发生这种情况并不意味着该问题与该行有任何关系,因为所有你到目前为止所做的转变是懒惰的。
对我来说,快速Google搜索“OnHeapColumnVector NullPointerException”出现了SPARK-16518。看起来这是一个自2.0.0以来一直存在的问题,但仍未解决。
答案 1 :(得分:0)
看起来像org.apache.spark.sql.execution.vectorized.OnHeapColumnVector.getInt命中一个空列(由于一个错误)。检查是否在镶木地板文件的架构中找到了int32。请在此处查看此版本的另一个版本:https://issues.apache.org/jira/browse/HIVE-14294
另外,分享镶木地板文件的架构。