在我的Anaconda Python发行版上,复制一个16 GB或更大的Numpy数组(无论dtype如何)都会将副本的所有元素设置为0:
>>> np.arange(2 ** 31 - 1).copy() # works fine
array([ 0, 1, 2, ..., 2147483644, 2147483645,
2147483646])
>>> np.arange(2 ** 31).copy() # wait, what?!
array([0, 0, 0, ..., 0, 0, 0])
>>> np.arange(2 ** 32 - 1, dtype=np.float32).copy()
array([ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00, ...,
4.29496730e+09, 4.29496730e+09, 4.29496730e+09], dtype=float32)
>>> np.arange(2 ** 32, dtype=np.float32).copy()
array([ 0., 0., 0., ..., 0., 0., 0.], dtype=float32)
此分发的np.__config__.show()
:
blas_opt_info:
library_dirs = ['/users/username/.anaconda3/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/users/username/.anaconda3/include']
libraries = ['mkl_rt', 'pthread']
lapack_opt_info:
library_dirs = ['/users/username/.anaconda3/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/users/username/.anaconda3/include']
libraries = ['mkl_rt', 'pthread']
mkl_info:
library_dirs = ['/users/username/.anaconda3/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/users/username/.anaconda3/include']
libraries = ['mkl_rt', 'pthread']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
library_dirs = ['/users/username/.anaconda3/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/users/username/.anaconda3/include']
libraries = ['mkl_rt', 'pthread']
blas_mkl_info:
library_dirs = ['/users/username/.anaconda3/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/users/username/.anaconda3/include']
libraries = ['mkl_rt', 'pthread']
为了比较,这里是我的系统Python发行版的np.__config__.show()
,它没有这个问题:
blas_opt_info:
define_macros = [('HAVE_CBLAS', None)]
libraries = ['openblas', 'openblas']
language = c
library_dirs = ['/usr/local/lib']
openblas_lapack_info:
define_macros = [('HAVE_CBLAS', None)]
libraries = ['openblas', 'openblas']
language = c
library_dirs = ['/usr/local/lib']
openblas_info:
define_macros = [('HAVE_CBLAS', None)]
libraries = ['openblas', 'openblas']
language = c
library_dirs = ['/usr/local/lib']
lapack_opt_info:
define_macros = [('HAVE_CBLAS', None)]
libraries = ['openblas', 'openblas']
language = c
library_dirs = ['/usr/local/lib']
blas_mkl_info:
NOT AVAILABLE
我想知道MKL加速是否是问题。我已经在Python 2和3上重现了这个bug。
答案 0 :(得分:4)
这只是猜测。我目前没有任何证据支持以下声明,但我的猜测是这是一个简单的溢出问题:
>>> np.arange(2 ** 31 - 1).size
2147483647
恰好是最大的int32
值:
>>> np.iinfo(np.int32)
iinfo(min=-2147483648, max=2147483647, dtype=int32)
因此,当您实际拥有大小为2147483648
(2**31
)的数组并使用int32时,这将溢出并给出实际的负值。然后在numpy.ndarray.copy
方法中可能存在类似的内容:
for (i = 0 ; i < size ; i ++) {
newarray[i] = oldarray[i]
}
但是考虑到现在大小为负,循环将不会执行,因为0 > -2147483648
。
新数组实际上用零初始化是很奇怪的,因为在复制数组之前实际放置零是没有意义的(但它可能类似于in this question)。
再说一遍:这只是在猜测,但它会与行为相匹配。