我正在使用backprop算法来预测价格。我正在使用神经网络包。我的神经网络有一个隐藏层,有4个节点。我的网络输出是不变的,并且变化很小。我已将数据标准化。可能是什么问题
my neuralnet
nn<- neuralnet(O.avgprice+O.firstquartil+O.thirdquartil~Timestamp+avg.price+weekday+firstquartil+thirdquartil+nooftransactions,
data = trainANN,hidden = c(4), algorithm = "backprop", rep = "1",learningrate = 0.01, threshold = 0.01, linear.output = F)
ン$ net.result [[1]]
[,1] [,2] [,3]
96121 1 1 0.000000018657606331
24801 1 1 0.000000015347274146
54704 1 1 0.000000017414965756
54319 1 1 0.000000019182735544
89317 1 1 0.000000019540763609
34027 1 1 0.000000018349857324
59145 1 1 0.000000018922293155
93596 1 1 0.000000019104633387
42171 1 1 0.000000018486794230
77026 1 1 0.000000019084768899
50876 1 1 0.000000017692360018
83098 1 1 0.000000018162597292
26539 1 1 0.000000014943126974
88331 1 1 0.000000019915268711
66083 1 1 0.000000019481553856
这是我如何规范我的数据
maxs <- apply(m1,2,max)
mins <- apply(m1,2,min)
ANN <- as.data.frame(scale(m1,center = mins, scale = maxs - mins ))
如果需要更多信息,请告诉我
答案 0 :(得分:0)
lapply performs better in scaling/normalising data of large volumes
m <- function(x) {(x - min(x, na.rm=TRUE))/(max(x,na.rm=TRUE) -
min(x, na.rm=TRUE))}
N <- as.data.frame(lapply(m1, doit))