我想我在Haskell中正确计算了Luhn algorithm:
f1 :: Integer -> [Integer]
f1 x = if x < 10 then [x] else (f1 (div x 10))++[mod x 10]
f2 :: [Integer] -> [Integer]
f2 xs = [(!!) xs (x - 1) | x <- [1..(length xs)] , even x]
f3 :: [Integer] -> [Integer]
f3 xs = if mod (length xs) 2 /= 0 then (f2 xs) else (f2 (0:xs))
f4 :: [Integer] -> [Integer]
f4 xs = map (*2) (f3 xs)
f5 :: [Integer] -> [[Integer]]
f5 xs = map f1 xs
f6 :: [[Integer]] -> [Integer]
f6 [] = []
f6 (xs : xss) = xs++(f6 xss)
f7 :: [Integer] -> [Integer]
f7 xs = [(!!) xs (x - 1) | x <- [1..(length xs)] , odd x]
f8 :: [Integer] -> [Integer]
f8 xs = if mod (length xs) 2 /= 0 then (f7 xs) else (f7 (0:xs))
f9 :: [Integer] -> [Integer]
f9 xs = (f8 xs) ++ (f4 xs)
f :: Integer -> Integer
f x = sum (f6 (f5 (f9 xs)))
where xs = f1 x
luhn :: Integer -> Bool
luhn x = if mod (f x) 10 == 0 then True else False
例如,
luhn 49927398716 ==> True
luhn 49927398717 ==> False
现在我必须创建一个新函数sigLuhn
,使得n
为整数luhn n == True
,然后sigLuhn n
给出数字(或数字),使得如果我们将数字添加到n
的最终数字,那么新数字也会验证Luhn算法;如果luhn n == False
函数发出错误。例如,
sigLuhn 49927398716 ==> [8]
因为我们打电话给n = 49927398716
然后
luhn (10*n + 8) ==> True
8
是来自0
的最低整数。我的想法是下一个:
g1 :: Integer -> Integer
g1 x = div 10 x + 1
g2 :: Integer -> Integer -> Integer
g2 x y = x*(floor (10)^(g1 y)) + y
g3 :: Integer -> [Bool]
g3 x = [luhn (g2 x y) | y <- [1..]]
g4 :: [Bool] -> Int
g4 xs = minimum (elemIndices True xs)
g :: Integer -> Int
g x = g4 (g3 x)
sigLuhn :: Integer -> [Int]
sigLuhn x = if (luhn x) then [g x] else error "The conditions of Luhn's algorithm are not valid"
代码不会出错,但此代码sigLuhn
不正确。简而言之,如果我们假设函数luhn
是好的,你能帮我正确地写sigLuhn
吗?非常感谢你。
答案 0 :(得分:1)
doubleAndSum :: [Int] -> Int
doubleAndSum = fst . foldr (\i (acc, even) -> (acc + nextStep even i, not even)) (0,False)
where
nextStep even i
| even = (uncurry (+) . (`divMod` 10) . (*2)) i
| otherwise = i
myLuhn :: Int -> Bool
myLuhn = (0 ==) . (`mod` 10) . doubleAndSum . (map (read . (: ""))) . show
testCC :: [Bool]
testCC = map myLuhn [49927398716, 49927398717, 1234567812345678, 1234567812345670]
-- => [True,False,False,True]