在TF(here和here)中创建自定义标量摘要有几个SO答案,但我找不到有关创建自定义直方图的任何内容总结。自定义摘要似乎非常缺乏文档。我有一个简单的数据,我想总结一下 - 关于如何做出任何想法?
(tf.Summary.Value有一个我尝试使用过的histo字段,但它需要一个tensorflow :: HistogramProto;那个类上也没有文档,所以我对如何制作它感到茫然。我我尝试在下面创建一个最小的失败示例。)
<ef><b8><8f>
答案 0 :(得分:5)
这段代码有效:
import tensorflow as tf
import numpy as np
def log_histogram(writer, tag, values, step, bins=1000):
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
writer.add_summary(summary, step)
writer.flush()
sess = tf.Session()
placeholder = tf.placeholder(tf.float32)
tf.summary.histogram('N(0,1)', placeholder)
summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter('./summaries')
mu, sigma = 0, 0.1 # mean and standard deviation
s = np.random.normal(mu, 1, 10000)
log_histogram(writer, 'N(0,1)', s, 1, bins=100)