用于Python的matplotlib / plotly / bokeh中的3轴极坐标投影? (蜂巢地块)

时间:2017-02-01 23:28:46

标签: python matplotlib networkx plotly bokeh

对于允许3轴的极坐标投影是否有任何调整?我想可能是3D散点图倾斜到2D上,所以它像这样排列?

我最近发现了Hive Plots,我想尝试编写一个代码,这样我就可以在美学上有更多的自由范围,使它看起来更像these guys。我开始尝试制作一个,但我能想到的唯一方法就是用这样的极坐标。

我的问题: 有没有办法在matplotlib,plotly或bokeh中获得3轴极坐标? 如果没有 有没有办法修复3D绘图以获得此类结构?

fig = plt.figure(figsize=(10,10))
ax = plt.subplot(111, polar=True)
ax.plot(2*[np.pi/2], [0,1], color="black", linewidth=3)
ax.plot(2*[5*np.pi/4], [0,1], color="black", linewidth=3)
ax.plot(2*[7*np.pi/4], [0,1], color="black", linewidth=3)

enter image description here

1 个答案:

答案 0 :(得分:0)

也许是一个开始,但我会查看matplotlib 2.0,看看3D现在是否更好

import numpy as np

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

def Lin3dSeg(a,b):
    '''
    if a, b are spherical coordinate vector tuples, then it
    returns list of spherical coordinate points of a linear in r, theta, phi
    3D spiral segment connecting them   
    ''' 
    return [np.linspace(start, stop) for start, stop in zip(a,b)]

def Sphere2Cart(sphere_pt): # no particular convention, just thrown together
    x = sphere_pt[0] * np.sin(sphere_pt[1])
    y = sphere_pt[0] * np.cos(sphere_pt[1])
    z = sphere_pt[0] * np.cos(sphere_pt[2])
    return (x, y, z)

def SphereSegCarts(seg):
    return [Sphere2Cart(pt) for pt in zip(*Lin3dSeg(*seg))]

seg_a =((10, 0, 0),(5, np.pi/2, 0))
seg_b =((10, np.pi/2, 0),(1, 0, np.pi/2))
seg_c =((3, 0, np.pi/2),(10, np.pi/2, np.pi/2))


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.view_init(elev=45, azim=45)

ax.plot(*zip(*SphereSegCarts(seg_a)), c='r')
ax.plot(*zip(*SphereSegCarts(seg_b)), c='g')
ax.plot(*zip(*SphereSegCarts(seg_c)), c='b')

plt.show()

enter image description here