Stanford NER和POS,用于大数据的多线程

时间:2017-01-31 04:49:33

标签: python multithreading nltk stanford-nlp

我正在尝试使用 Stanford NER Stanford POS Tagger 来解析大约23000个文档。我使用以下伪代码实现了它 -

`for each in document:
  eachSentences = PunktTokenize(each)
  #code to generate NER Tagger
  #code to generate POS Taggers on the above output`

对于具有15 GB RAM的4核机器,NER的运行时间约为945小时。我试图通过使用“线程”库来加强操作,但是我收到以下错误 -

`Exception in thread Thread-2:
Traceback (most recent call last):
  File "/usr/lib/python2.7/threading.py", line 801, in __bootstrap_inner
    self.run()
  File "/usr/lib/python2.7/threading.py", line 754, in run
    self.__target(*self.__args, **self.__kwargs)
  File "removeStopWords.py", line 75, in partofspeechRecognition
    listOfRes_new = namedEntityRecognition(listRes[min:max])
  File "removeStopWords.py", line 63, in namedEntityRecognition
    listRes_ner.append(namedEntityRecognitionResume(eachResSentence))
  File "removeStopWords.py", line 50, in namedEntityRecognitionResume
    ner2Tags = ner2.tag(each.title().split())
  File "/home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/tag/stanford.py", line 71, in tag
    return sum(self.tag_sents([tokens]), [])
  File "/home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/tag/stanford.py", line 98, in tag_sents
    os.unlink(self._input_file_path)
OSError: [Errno 2] No such file or directory: '/tmp/tmpvMNqwB'`

我正在使用NLTK版本 - 3.2.1,Stanford NER,POS - 3.7.0 jar文件,以及线程模块。据我所知,这可能是由于/ tmp上的线程锁定。 如果我错了,请纠正我,还有使用线程运行上述内容的最佳方法或更好的方法来实现它。

我正在使用3 Class Classifier for NERMaxent POS Tagger

P.S。 - 请忽略Python文件的名称,我仍然没有删除原始文本中的停用词或标点符号。

编辑 - 使用cProfile,并按累计时间排序,我得到了以下前20个电话

600792 function calls (595912 primitive calls) in 60.795 seconds

Ordered by: cumulative time
List reduced from 3357 to 20 due to restriction <20>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000   60.811   60.811 removeStopWords.py:1(<module>)
    1    0.000    0.000   58.923   58.923 removeStopWords.py:76(partofspeechRecognition)
   28    0.001    0.000   58.883    2.103 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/tag/stanford.py:69(tag)
   28    0.004    0.000   58.883    2.103 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/tag/stanford.py:73(tag_sents)
   28    0.001    0.000   56.927    2.033 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/internals.py:63(java)
  141    0.001    0.000   56.532    0.401 /usr/lib/python2.7/subprocess.py:769(communicate)
  140    0.002    0.000   56.530    0.404 /usr/lib/python2.7/subprocess.py:1408(_communicate)
  140    0.008    0.000   56.492    0.404 /usr/lib/python2.7/subprocess.py:1441(_communicate_with_poll)
  400   56.474    0.141   56.474    0.141 {built-in method poll}
    1    0.001    0.001   43.522   43.522 removeStopWords.py:69(partofspeechRecognitionRes)
    1    0.000    0.000   15.401   15.401 removeStopWords.py:62(namedEntityRecognition)
    1    0.001    0.001   15.367   15.367 removeStopWords.py:46(namedEntityRecognitionRes)
  141    0.004    0.000    2.302    0.016 /usr/lib/python2.7/subprocess.py:651(__init__)
  141    0.020    0.000    2.287    0.016 /usr/lib/python2.7/subprocess.py:1199(_execute_child)
   56    0.002    0.000    1.933    0.035 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/internals.py:38(config_java)
   56    0.001    0.000    1.931    0.034 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/internals.py:599(find_binary)
  112    0.002    0.000    1.930    0.017 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/internals.py:582(find_binary_iter)
  118    0.009    0.000    1.928    0.016 /home/datascience/pythonEnv/local/lib/python2.7/site-packages/nltk/internals.py:453(find_file_iter)
    1    0.001    0.001    1.318    1.318 /usr/lib/python2.7/pickle.py:1383(load)
    1    0.046    0.046    1.317    1.317 /usr/lib/python2.7/pickle.py:851(load) 

2 个答案:

答案 0 :(得分:1)

似乎Python包装器是罪魁祸首。 Java实现并没有花费太多时间。这大约需要@Gabor Angeli提到的内容。试试吧。

希望它有所帮助!

答案 1 :(得分:0)

也许这已经解决了,但是对于那些试图用Python加速Stanford NLP的人们来说,这是久经考验的答案。.How to speedup Stanford NLP in Python?

基本上,它要求您在后端运行NER服务器并调用sner库,然后进一步执行所有与Stanford NLP相关的任务。

找到答案。

在解压缩Stanford NLP的文件夹中,在后台启动Stanford NLP Server。

下面给出的答案的一部分。

java -Djava.ext.dirs=./lib -cp stanford-ner.jar edu.stanford.nlp.ie.NERServer -port 9199 -loadClassifier ./classifiers/english.all.3class.distsim.crf.ser.gz
Then initiate Stanford NLP Server tagger in Python using sner library.

from sner import Ner
tagger = Ner(host='localhost',port=9199)

然后运行标记器。

%%time
classified_text=tagger.get_entities(text)
print (classified_text)
Output:

    [('My', 'O'), ('name', 'O'), ('is', 'O'), ('John', 'PERSON'), ('Doe', 'PERSON')]
CPU times: user 4 ms, sys: 0 ns, total: 4 ms
Wall time: 18.2 ms