我试图通过以下链接可视化keras中每个卷积层的输出:MNIST Visualisation。我修改了一些图层来删除错误,但现在我已经陷入了密集层错误。
np.set_printoptions(precision=5, suppress=True)
np.random.seed(1337) # for reproducibility
nb_classes = 10
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data("mnist.pkl")
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
i = 4600
pl.imshow(X_train[i, 0], interpolation='nearest', cmap=cm.binary)
print("label : ", Y_train[i,:])
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same',input_shape = (1,28,28))) #changed border_mode from full -> valid
convout1 = Activation('relu')
model.add(convout1)
model.add(Convolution2D(32, 32, 3))
convout2 = Activation('relu')
model.add(convout2)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(32*196, 128)) #ERROR HERE
任何评论或建议都非常感谢。谢谢。
答案 0 :(得分:2)
如果您查看Dense
图层的文档,那么您会注意到它接受的第一个参数是输出的形状,其次是init
,它描述了权重的方式。层启动。在您的情况下,您提供了int
作为第二个位置参数,这导致了错误。您应该将代码更改为(假设您希望以128维向量的形式输出):
model.add(Dense(128))