我有一个相当大的程序,内存问题很小。代码按原样运行,我得到了我想要的结果,但我想摆脱腐败。我跑了valgrind,但我真的不明白错误。
以下是它的说法:
==11295==
==11295== HEAP SUMMARY:
==11295== in use at exit: 72,704 bytes in 2 blocks
==11295== total heap usage: 19,836 allocs, 19,834 frees, 1,247,711 bytes allocated
==11295==
==11295== 0 bytes in 1 blocks are definitely lost in loss record 1 of 2
==11295== at 0x4C2E80F: operator new[](unsigned long) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==11295== by 0x40197C: grid::setSize(int, int) (grid.cpp:75)
==11295== by 0x40B9AC: node::node() (node.cpp:17)
==11295== by 0x4032AF: main (main.cpp:15)
==11295==
==11295== 72,704 bytes in 1 blocks are still reachable in loss record 2 of 2
==11295== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==11295== by 0x4EC3EFF: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==11295== by 0x40104E9: call_init.part.0 (dl-init.c:72)
==11295== by 0x40105FA: call_init (dl-init.c:30)
==11295== by 0x40105FA: _dl_init (dl-init.c:120)
==11295== by 0x4000CF9: ??? (in /lib/x86_64-linux-gnu/ld-2.23.so)
==11295==
==11295== LEAK SUMMARY:
==11295== definitely lost: 0 bytes in 1 blocks
==11295== indirectly lost: 0 bytes in 0 blocks
==11295== possibly lost: 0 bytes in 0 blocks
==11295== still reachable: 72,704 bytes in 1 blocks
==11295== suppressed: 0 bytes in 0 blocks
==11295==
==11295== For counts of detected and suppressed errors, rerun with: -v
==11295== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 1 from 1)
我知道我创建的唯一指针是在grid.setSize()函数中,但这些指针都应由析构函数处理。此外,第一个valgrind块表示丢失了0个字节。
我困惑的是第二块。我没有在任何地方使用过malloc,我真的不知道该块需要什么。
感谢任何帮助!
根据要求,这里有一些代码。
grid.cpp
#include <iostream>
#include <cstdlib>
#include <cstddef>
#include "grid.h"
using namespace std;
// initializes the double pointer
grid::grid()
{
m_grid = NULL;
}
// destroys the 2D game array
grid::~grid()
{
for (int i = 0; i < m_width; i++)
{
delete[] m_grid[i];
}
delete[] m_grid;
}
cell** grid::getGrid()
{
return m_grid;
}
// returns width
int grid::getWidth()
{
return m_width;
}
// returns height
int grid::getHeight()
{
return m_height;
}
// returns radiation level of specified cell
int grid::getCellRad(const int x, const int y) const
{
return m_grid[x][y].m_rad;
}
int grid::getXRad() const
{
return m_x_rad;
}
int grid::getYRad() const
{
return m_y_rad;
}
// clears grid pointer
void grid::setGridNull()
{
m_grid = NULL;
}
// creates a grid of size width * height and makes all cells unoccupied
void grid::setSize(const int grid_width, const int grid_height)
{
m_width = grid_width;
m_height = grid_height;
m_grid = new cell* [m_width];
// from left to right
for (int i = 0; i < m_width; i++)
{
m_grid[i] = new cell [m_height];
// from top to bottom
for (int j = 0; j < m_height; j++)
{
m_grid[i][j].m_occupied = 0;
}
}
}
// calculates radiation value for all cells in the grid
void grid::setRadiation(const int x_coord, const int y_coord,
const int rad_mag, const int decay_factor)
{
m_x_rad = x_coord;
m_y_rad = y_coord;
// from left to right
for (int i = 0; i < m_width; i++)
{
// from top to bottom
for (int j = 0; j < m_height; j++)
{
// radiation (equals) max radiation (minus)
// Manhattan distance between source and current (times) decay factor
m_grid[i][j].m_rad = rad_mag -
(abs(m_x_rad - i) + abs(m_y_rad - j)) * decay_factor;
// minimum radiation
if (m_grid[i][j].m_rad < 1)
m_grid[i][j].m_rad = 1;
}
}
return;
}
// makes a specified cell unavailable
void grid::setOccupied(const int x, const int y)
{
m_grid[x][y].m_occupied = 1;
return;
}
// makes a specified cell available
void grid::setUnoccupied(const int x, const int y)
{
m_grid[x][y].m_occupied = 0;
return;
}
grid& grid::operator=(const grid& g)
{
m_x_rad = g.m_x_rad;
m_y_rad = g.m_y_rad;
m_width = g.m_width;
m_height = g.m_height;
m_grid = new cell* [m_width];
// from left to right
for (int i = 0; i < m_width; i++)
{
m_grid[i] = new cell [m_height];
// from top to bottom
for (int j = 0; j < m_height; j++)
{
m_grid[i][j].m_occupied = g.m_grid[i][j].m_occupied;
m_grid[i][j].m_rad = g.m_grid[i][j].m_rad;
}
}
return *this;
}
// checks whether specified cell is available
bool grid::isAvailable(const int x, const int y) const
{
return !(m_grid[x][y].m_occupied);
}
// displays a map of available/unavailable cells
void grid::printOccupied() const
{
cout << "--------------------Occupied\n";
// from top to bottom
for (int i = 0; i < m_height; i++)
{
// from left to right
for (int j = 0; j < m_width; j++)
{
cout << (m_grid[j][i].m_occupied ? "1" : "0") << " ";
}
cout << "\n";
}
}
// displays a map of every cell's radiation level
void grid::printRadiation() const
{
cout << "--------------------Radiation\n";
// from top to bottom
for (int i = 0; i < m_height; i++)
{
// from left to right
for (int j = 0; j < m_width; j++)
{
cout << m_grid[j][i].m_rad
<< (m_grid[j][i].m_rad >= DOUBLE_DIGIT ? " " : " ");
}
cout << "\n";
}
}
的main.cpp
#include "main.h"
using namespace std;
int main()
{
clock_t start = clock();
double duration;
queue<node> frontier;
node root; // node that grabs initial puzzle state
unordered_map<int, basic_node> node_map;
int grid_width, grid_height, x_coord, y_coord, rad_mag, decay_factor,
num_alligators, num_turtles, num_trees;
string orientation;
root.setNumItems(VECTOR_SHIFT + num_alligators + num_turtles + num_trees);
if (!getInitialPuzzle(root.getGrid(), root.getItems(),
grid_width, grid_height, rad_mag, decay_factor,
num_alligators, num_turtles, num_trees,
x_coord, y_coord, orientation))
{
return -1;
}
frontier.push(node(root));
breadthFirstTreeSearch(frontier, node_map, num_alligators, num_trees);
// put the root in the hash table
basic_node r;
r.node_id = frontier.back().getID();
r.node_parent = -1;
r.node_cost = frontier.back().getItems()[1]. // only the boat has a cost
calcItemCost(frontier.back().getGrid());
// no action taken to get here
r.node_action_item = '\0';
r.node_action_number = 0;
r.node_action_move = '\0';
node_map.insert({r.node_id, r});
int j = 0;
while (!frontier.empty())
{
++j;
if (frontier.front().isGoal())
break;
// only need to check boat, alligators, and turtles
for (int i = 1; i < frontier.front().getItems().size() - num_trees; i++)
{
// only the boat can rotate
if (i == 1)
{
// if the boat can rotate ccw in its own grid
if (frontier.front().getItems()[i].
canRotateCCW(frontier.front().getGrid()))
{
// enqueue a copy of the current node and rotate that boat ccw
frontier.push(frontier.front());
frontier.back().getItems()[i].rotateCCW(frontier.back().getGrid());
basic_node b;
b.node_id = frontier.back().getID();
b.node_parent = frontier.back().getParent();
b.node_cost = frontier.back().getItems()[1].
calcItemCost(frontier.back().getGrid());
b.node_action_item = frontier.back().getItems()[1].getType();
b.node_action_number = 0; // there's only one boat
b.node_action_move = 'N'; // counterclockwise
node_map.insert({b.node_id, b});
}
// if the boat can rotate cw in its own grid
if (frontier.front().getItems()[i].
canRotateCW(frontier.front().getGrid()))
{
// enqueue a copy of the current node and rotate that boat cw
frontier.push(frontier.front());
frontier.back().getItems()[i].rotateCW(frontier.back().getGrid());
basic_node b;
b.node_id = frontier.back().getID();
b.node_parent = frontier.back().getParent();
b.node_cost = frontier.back().getItems()[1].
calcItemCost(frontier.back().getGrid());
b.node_action_item = frontier.back().getItems()[1].getType();
b.node_action_number = 0; // there's only one boat
b.node_action_move = 'C'; // clockwise
node_map.insert({b.node_id, b});
}
}
// if the boat, alligator, or turtle can move forward
if (frontier.front().getItems()[i].
canMoveForward(frontier.front().getGrid()))
{
// enqueue a copy of the current node and move the item forward
frontier.push(frontier.front());
frontier.back().getItems()[i].moveForward(frontier.back().getGrid());
basic_node b;
b.node_id = frontier.back().getID();
b.node_parent = frontier.back().getParent();
b.node_cost = frontier.back().getItems()[1].
calcItemCost(frontier.back().getGrid());
// gets B, A, or T for the item that moves
b.node_action_item = frontier.back().getItems()[i].getType();
// need to shift for boat and goal, and alligator if necessary
b.node_action_number = i -
(b.node_action_item == 'B' ? 1 : VECTOR_SHIFT) - // shift 1 if boat
(b.node_action_item == 'A' ? 0 : num_alligators);
// this will get the movement; one of {U, D, L, R}
b.node_action_move = (frontier.back().getItems()[i].getOrientation());
node_map.insert({b.node_id, b});
}
// if the alligator or turtle can move backward
if (frontier.front().getItems()[i].
canMoveBackward(frontier.front().getGrid()))
{
// enqueue a copy of the current node and move the item forward
frontier.push(frontier.front());
frontier.back().getItems()[i].moveBackward(frontier.back().getGrid());
basic_node b;
b.node_id = frontier.back().getID();
b.node_parent = frontier.back().getParent();
b.node_cost = frontier.back().getItems()[1].
calcItemCost(frontier.back().getGrid());
// gets A or T for the item that moves
b.node_action_item = frontier.back().getItems()[i].getType();
// need to shift for boat and goal, and alligator if necessary
b.node_action_number = i - VECTOR_SHIFT -
(b.node_action_item == 'A' ? 0 : num_alligators);
// this will get the movement; one of {U, D, L, R}
b.node_action_move = (frontier.back().getItems()[i].getOrientation());
// this will get the movement; one of {U, D, L, R}
switch (frontier.back().getItems()[i].getOrientation())
{
case 'L':
b.node_action_move = 'R';
break;
case 'R':
b.node_action_move = 'L';
break;
case 'U':
b.node_action_move = 'D';
break;
case 'D':
b.node_action_move = 'U';
break;
}
node_map.insert({b.node_id, b});
}
}
// all possible moves completed for the current state of the board
frontier.pop();
}
root.getGrid().printOccupied();
cout << endl;
frontier.front().getGrid().printRadiation();
duration = double(clock() - start) / CLOCKS_PER_MS;
writeSolutions(duration, frontier.front(), node_map, rad_mag, decay_factor,
num_alligators, num_turtles, num_trees);
return 0;
}
和node.cpp
#include <cstddef>
#include <iostream>
#include "node.h"
int node::class_id = 0;
int node::num_items = 0;
node::node()
{
m_grid.setGridNull();
m_grid.setSize(0, 0);
m_grid.setRadiation(0, 0, 0, 0);
m_id = 0;
m_parent = 0;
}
node::node(const node& n)
{
m_grid = n.m_grid;
m_items = n.m_items;
m_id = ++class_id;
m_parent = n.m_id;
/*for (int i = 0; i < n.getNumItems(); i++)
{
m_items[i] = n.m_items[i];
}*/
}
int node::getNumItems() const
{
return num_items;
}
grid& node::getGrid()
{
return m_grid;
}
vector<item>& node::getItems()
{
return m_items;
}
int node::getID() const
{
return m_id;
}
int node::getParent() const
{
return m_parent;
}
void node::setNumItems(const int n)
{
num_items = n;
return;
}
void node::setID(const int i)
{
m_id = i;
return;
}
void node::setParent(const int p)
{
m_parent = p;
return;
}
node& node::operator=(node& n)
{
m_grid = n.m_grid;
m_parent = n.m_parent;
m_id = ++class_id;
for (int i = 0; i < n.getItems().size(); i++)
{
cout << "yo\n";
m_items[i] = n.m_items[i];
cout << "hey\n";
}
return *this;
}
// this will compare the boat and goal locations to determine goal node
bool node::isGoal() const
{
bool found = false;
// if we don't have 2+, we don't have a goal and a boat
if (m_items.size() >= 2)
{
// item 1 is the boat
// back of the boat is in the goal
if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
m_items[1].getYCoord() == m_items[0].getYCoord())
{
found = true;
}
else
{
switch (m_items[1].getOrientation())
{
case 'R':
if ((m_items[1].getXCoord() == m_items[0].getXCoord() - 1) &&
m_items[1].getYCoord() == m_items[0].getYCoord())
{
found = true;
}
break;
case 'U':
if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
m_items[1].getYCoord() == m_items[0].getYCoord() + 1)
{
found = true;
}
break;
case 'L':
if ((m_items[1].getXCoord() == m_items[0].getXCoord() + 1) &&
m_items[1].getYCoord() == m_items[0].getYCoord())
{
found = true;
}
break;
case 'D':
if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
m_items[1].getYCoord() == m_items[0].getYCoord() - 1)
{
found = true;
}
break;
}
}
}
return found;
}
答案 0 :(得分:2)
线索是堆栈框架中的_dl_init
。这是共享库的初始化函数。每次加载共享库时,其初始化函数都会运行。有问题的内存块是在共享库的初始化函数中分配的。
共享库通常在其初始化函数中为其内部数据结构分配内存。这是C ++运行时库,预计在进程的生命周期内保持加载状态。因此,这不是真正的内存泄漏,特别是因为“可能丢失”的名称表明valgrind设法在某处找到指向内存块的指针。
但是,您自己的代码中确实存在内存泄漏。 “绝对迷失”意味着它意味着什么:绝对迷失。你的班级泄露了记忆,而且valgrind没有找到任何悬挂指针,否则它将属于“可能丢失”的类别。