Valgrind说malloc内存损坏,没有使用malloc

时间:2017-01-29 01:49:35

标签: c++ memory valgrind

我有一个相当大的程序,内存问题很小。代码按原样运行,我得到了我想要的结果,但我想摆脱腐败。我跑了valgrind,但我真的不明白错误。

以下是它的说法:

==11295== 
==11295== HEAP SUMMARY:
==11295==     in use at exit: 72,704 bytes in 2 blocks
==11295==   total heap usage: 19,836 allocs, 19,834 frees, 1,247,711 bytes allocated
==11295== 
==11295== 0 bytes in 1 blocks are definitely lost in loss record 1 of 2
==11295==    at 0x4C2E80F: operator new[](unsigned long) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==11295==    by 0x40197C: grid::setSize(int, int) (grid.cpp:75)
==11295==    by 0x40B9AC: node::node() (node.cpp:17)
==11295==    by 0x4032AF: main (main.cpp:15)
==11295== 
==11295== 72,704 bytes in 1 blocks are still reachable in loss record 2 of 2
==11295==    at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==11295==    by 0x4EC3EFF: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==11295==    by 0x40104E9: call_init.part.0 (dl-init.c:72)
==11295==    by 0x40105FA: call_init (dl-init.c:30)
==11295==    by 0x40105FA: _dl_init (dl-init.c:120)
==11295==    by 0x4000CF9: ??? (in /lib/x86_64-linux-gnu/ld-2.23.so)
==11295== 
==11295== LEAK SUMMARY:
==11295==    definitely lost: 0 bytes in 1 blocks
==11295==    indirectly lost: 0 bytes in 0 blocks
==11295==      possibly lost: 0 bytes in 0 blocks
==11295==    still reachable: 72,704 bytes in 1 blocks
==11295==         suppressed: 0 bytes in 0 blocks
==11295== 
==11295== For counts of detected and suppressed errors, rerun with: -v
==11295== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 1 from 1)

我知道我创建的唯一指针是在grid.setSize()函数中,但这些指针都应由析构函数处理。此外,第一个valgrind块表示丢失了0个字节。

我困惑的是第二块。我没有在任何地方使用过malloc,我真的不知道该块需要什么。

感谢任何帮助!

根据要求,这里有一些代码。

grid.cpp

#include <iostream>
#include <cstdlib>
#include <cstddef>
#include "grid.h"
using namespace std;

// initializes the double pointer
grid::grid()
{
  m_grid = NULL;
}

// destroys the 2D game array
grid::~grid()
{
  for (int i = 0; i < m_width; i++)
  {
    delete[] m_grid[i];
  }

  delete[] m_grid;
}

cell** grid::getGrid()
{
  return m_grid;
}

// returns width
int grid::getWidth()
{
  return m_width;
}

// returns height
int grid::getHeight()
{
  return m_height;
}

// returns radiation level of specified cell
int grid::getCellRad(const int x, const int y) const
{
  return m_grid[x][y].m_rad;
}

int grid::getXRad() const
{
  return m_x_rad;
}

int grid::getYRad() const
{
  return m_y_rad;
}

// clears grid pointer
void grid::setGridNull()
{
  m_grid = NULL;
}

// creates a grid of size width * height and makes all cells unoccupied
void grid::setSize(const int grid_width, const int grid_height)
{
  m_width = grid_width;
  m_height = grid_height;
  m_grid = new cell* [m_width];

  // from left to right
  for (int i = 0; i < m_width; i++)
  {
    m_grid[i] = new cell [m_height];

    // from top to bottom
    for (int j = 0; j < m_height; j++)
    {
      m_grid[i][j].m_occupied = 0;
    }
  }
}

// calculates radiation value for all cells in the grid
void grid::setRadiation(const int x_coord, const int y_coord,
  const int rad_mag, const int decay_factor)
{
  m_x_rad = x_coord;
  m_y_rad = y_coord;

  // from left to right
  for (int i = 0; i < m_width; i++)
  {
    // from top to bottom
    for (int j = 0; j < m_height; j++)
    {
      // radiation (equals) max radiation (minus)
      // Manhattan distance between source and current (times) decay factor
      m_grid[i][j].m_rad = rad_mag -
        (abs(m_x_rad - i) + abs(m_y_rad - j)) * decay_factor;

      // minimum radiation
      if (m_grid[i][j].m_rad < 1)
        m_grid[i][j].m_rad = 1;
    }
  }

  return;
}

// makes a specified cell unavailable
void grid::setOccupied(const int x, const int y)
{
  m_grid[x][y].m_occupied = 1;
  return;
}

// makes a specified cell available
void grid::setUnoccupied(const int x, const int y)
{
  m_grid[x][y].m_occupied = 0;
  return;
}

grid& grid::operator=(const grid& g)
{
  m_x_rad = g.m_x_rad;
  m_y_rad = g.m_y_rad;
  m_width = g.m_width;
  m_height = g.m_height;
  m_grid = new cell* [m_width];

  // from left to right
  for (int i = 0; i < m_width; i++)
  {
    m_grid[i] = new cell [m_height];

    // from top to bottom
    for (int j = 0; j < m_height; j++)
    {
      m_grid[i][j].m_occupied = g.m_grid[i][j].m_occupied;
      m_grid[i][j].m_rad = g.m_grid[i][j].m_rad;
    }
  }

  return *this;
}

// checks whether specified cell is available
bool grid::isAvailable(const int x, const int y) const
{
  return !(m_grid[x][y].m_occupied);
}

// displays a map of available/unavailable cells
void grid::printOccupied() const
{
  cout << "--------------------Occupied\n";

  // from top to bottom
  for (int i = 0; i < m_height; i++)
  {
    // from left to right
    for (int j = 0; j < m_width; j++)
    {
      cout << (m_grid[j][i].m_occupied ? "1" : "0") << "  ";
    }
    cout << "\n";
  }
}

// displays a map of every cell's radiation level
void grid::printRadiation() const
{
  cout << "--------------------Radiation\n";

  // from top to bottom
  for (int i = 0; i < m_height; i++)
  {
    // from left to right
    for (int j = 0; j < m_width; j++)
    {
      cout << m_grid[j][i].m_rad
        << (m_grid[j][i].m_rad >= DOUBLE_DIGIT ? " " : "  ");
    }
    cout << "\n";
  }
}

的main.cpp

#include "main.h"
using namespace std;

int main()
{
    clock_t start = clock();
    double duration;
    queue<node> frontier;
    node root; // node that grabs initial puzzle state
    unordered_map<int, basic_node> node_map;

    int grid_width, grid_height, x_coord, y_coord, rad_mag, decay_factor,
      num_alligators, num_turtles, num_trees;
    string orientation;

    root.setNumItems(VECTOR_SHIFT + num_alligators + num_turtles + num_trees);

    if (!getInitialPuzzle(root.getGrid(), root.getItems(),
        grid_width, grid_height, rad_mag, decay_factor,
        num_alligators, num_turtles, num_trees,
        x_coord, y_coord, orientation))
    {
        return -1;
    }

    frontier.push(node(root));
    breadthFirstTreeSearch(frontier, node_map, num_alligators, num_trees);

    // put the root in the hash table
    basic_node r;
    r.node_id = frontier.back().getID();
    r.node_parent = -1;
    r.node_cost = frontier.back().getItems()[1]. // only the boat has a cost
        calcItemCost(frontier.back().getGrid());
    // no action taken to get here
    r.node_action_item = '\0';
    r.node_action_number = 0;
    r.node_action_move = '\0';

    node_map.insert({r.node_id, r});

    int j = 0;
    while (!frontier.empty())
    {
        ++j;

        if (frontier.front().isGoal())
            break;

        // only need to check boat, alligators, and turtles
        for (int i = 1; i < frontier.front().getItems().size() - num_trees; i++)
        {
            // only the boat can rotate
            if (i == 1)
            {
                // if the boat can rotate ccw in its own grid
                if (frontier.front().getItems()[i].
                    canRotateCCW(frontier.front().getGrid()))
                {
                    // enqueue a copy of the current node and rotate that boat ccw
                    frontier.push(frontier.front());
                    frontier.back().getItems()[i].rotateCCW(frontier.back().getGrid());

                    basic_node b;
                    b.node_id = frontier.back().getID();
                    b.node_parent = frontier.back().getParent();
                    b.node_cost = frontier.back().getItems()[1].
                        calcItemCost(frontier.back().getGrid());
                    b.node_action_item = frontier.back().getItems()[1].getType();
                    b.node_action_number = 0; // there's only one boat
                    b.node_action_move = 'N'; // counterclockwise

                    node_map.insert({b.node_id, b});
                }

                // if the boat can rotate cw in its own grid
                if (frontier.front().getItems()[i].
                    canRotateCW(frontier.front().getGrid()))
                {
                    // enqueue a copy of the current node and rotate that boat cw
                    frontier.push(frontier.front());
                    frontier.back().getItems()[i].rotateCW(frontier.back().getGrid());

                    basic_node b;
                    b.node_id = frontier.back().getID();
                    b.node_parent = frontier.back().getParent();
                    b.node_cost = frontier.back().getItems()[1].
                        calcItemCost(frontier.back().getGrid());
                    b.node_action_item = frontier.back().getItems()[1].getType();
                    b.node_action_number = 0; // there's only one boat
                    b.node_action_move = 'C'; // clockwise

                    node_map.insert({b.node_id, b});
                }
            }

            // if the boat, alligator, or turtle can move forward
            if (frontier.front().getItems()[i].
                canMoveForward(frontier.front().getGrid()))
            {
                // enqueue a copy of the current node and move the item forward
                frontier.push(frontier.front());
                frontier.back().getItems()[i].moveForward(frontier.back().getGrid());

                basic_node b;
                b.node_id = frontier.back().getID();
                b.node_parent = frontier.back().getParent();
                b.node_cost = frontier.back().getItems()[1].
                    calcItemCost(frontier.back().getGrid());

                // gets B, A, or T for the item that moves
                b.node_action_item = frontier.back().getItems()[i].getType();
                // need to shift for boat and goal, and alligator if necessary
                b.node_action_number = i -
                    (b.node_action_item == 'B' ? 1 : VECTOR_SHIFT) - // shift 1 if boat
                    (b.node_action_item == 'A' ? 0 : num_alligators);
                // this will get the movement; one of {U, D, L, R}
                b.node_action_move = (frontier.back().getItems()[i].getOrientation());

                node_map.insert({b.node_id, b});
            }

            // if the alligator or turtle can move backward
            if (frontier.front().getItems()[i].
                canMoveBackward(frontier.front().getGrid()))
            {
                // enqueue a copy of the current node and move the item forward
                frontier.push(frontier.front());
                frontier.back().getItems()[i].moveBackward(frontier.back().getGrid());

                basic_node b;
                b.node_id = frontier.back().getID();
                b.node_parent = frontier.back().getParent();
                b.node_cost = frontier.back().getItems()[1].
                    calcItemCost(frontier.back().getGrid());

                // gets A or T for the item that moves
                b.node_action_item = frontier.back().getItems()[i].getType();
                // need to shift for boat and goal, and alligator if necessary
                b.node_action_number = i - VECTOR_SHIFT -
                    (b.node_action_item == 'A' ? 0 : num_alligators);
                // this will get the movement; one of {U, D, L, R}
                b.node_action_move = (frontier.back().getItems()[i].getOrientation());

                // this will get the movement; one of {U, D, L, R}
                switch (frontier.back().getItems()[i].getOrientation())
                {
                    case 'L':
                        b.node_action_move = 'R';
                        break;
                    case 'R':
                        b.node_action_move = 'L';
                        break;
                    case 'U':
                        b.node_action_move = 'D';
                        break;
                    case 'D':
                        b.node_action_move = 'U';
                        break;
                }

                node_map.insert({b.node_id, b});
            }
        }

        // all possible moves completed for the current state of the board
        frontier.pop();
    }

    root.getGrid().printOccupied();
    cout << endl;
    frontier.front().getGrid().printRadiation();

    duration = double(clock() - start) / CLOCKS_PER_MS;
    writeSolutions(duration, frontier.front(), node_map, rad_mag, decay_factor,
        num_alligators, num_turtles, num_trees);

    return 0;
}

和node.cpp

#include <cstddef>
#include <iostream>
#include "node.h"

int node::class_id = 0;
int node::num_items = 0;

node::node()
{
  m_grid.setGridNull();
  m_grid.setSize(0, 0);
  m_grid.setRadiation(0, 0, 0, 0);
  m_id = 0;
  m_parent = 0;
}

node::node(const node& n)
{
  m_grid = n.m_grid;
  m_items = n.m_items;
  m_id = ++class_id;
  m_parent = n.m_id;

  /*for (int i = 0; i < n.getNumItems(); i++)
  {
    m_items[i] = n.m_items[i];
  }*/
}

int node::getNumItems() const
{
  return num_items;
}

grid& node::getGrid()
{
  return m_grid;
}

vector<item>& node::getItems()
{
  return m_items;
}

int node::getID() const
{
  return m_id;
}

int node::getParent() const
{
  return m_parent;
}

void node::setNumItems(const int n)
{
  num_items = n;
  return;
}

void node::setID(const int i)
{
  m_id = i;
  return;
}

void node::setParent(const int p)
{
  m_parent = p;
  return;
}

node& node::operator=(node& n)
{
  m_grid = n.m_grid;
  m_parent = n.m_parent;
  m_id = ++class_id;

  for (int i = 0; i < n.getItems().size(); i++)
  {
    cout << "yo\n";
    m_items[i] = n.m_items[i];
    cout << "hey\n";
  }

  return *this;
}

// this will compare the boat and goal locations to determine goal node
bool node::isGoal() const
{
  bool found = false;

  // if we don't have 2+, we don't have a goal and a boat
  if (m_items.size() >= 2)
  {
    // item 1 is the boat
    // back of the boat is in the goal
    if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
      m_items[1].getYCoord() == m_items[0].getYCoord())
    {
      found = true;
    }

    else
    {
      switch (m_items[1].getOrientation())
      {
        case 'R':
          if ((m_items[1].getXCoord() == m_items[0].getXCoord() - 1) &&
            m_items[1].getYCoord() == m_items[0].getYCoord())
          {
            found = true;
          }
          break;

        case 'U':
          if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
            m_items[1].getYCoord() == m_items[0].getYCoord() + 1)
          {
            found = true;
          }
          break;

        case 'L':
          if ((m_items[1].getXCoord() == m_items[0].getXCoord() + 1) &&
            m_items[1].getYCoord() == m_items[0].getYCoord())
          {
            found = true;
          }
          break;

        case 'D':
          if ((m_items[1].getXCoord() == m_items[0].getXCoord()) &&
            m_items[1].getYCoord() == m_items[0].getYCoord() - 1)
          {
            found = true;
          }
          break;
      }
    }
  }

  return found;
}

1 个答案:

答案 0 :(得分:2)

线索是堆栈框架中的_dl_init。这是共享库的初始化函数。每次加载共享库时,其初始化函数都会运行。有问题的内存块是在共享库的初始化函数中分配的。

共享库通常在其初始化函数中为其内部数据结构分配内存。这是C ++运行时库,预计在进程的生命周期内保持加载状态。因此,这不是真正的内存泄漏,特别是因为“可能丢失”的名称表明valgrind设法在某处找到指向内存块的指针。

但是,您自己的代码中确实存在内存泄漏。 “绝对迷失”意味着它意味着什么:绝对迷失。你的班级泄露了记忆,而且valgrind没有找到任何悬挂指针,否则它将属于“可能丢失”的类别。