如何通过pyspark.ml.tuning.TrainValidationSplit调整后得到最好的参数?

时间:2017-01-28 09:50:09

标签: apache-spark pyspark apache-spark-ml

我正试图通过ALS调整Spark(PySpark)TrainValidationSplit模型的超参数。

效果很好,但我想知道哪种超参数组合最好。评估后如何获得最好的参数?

from pyspark.ml.recommendation import ALS
from pyspark.ml.tuning import TrainValidationSplit, ParamGridBuilder
from pyspark.ml.evaluation import RegressionEvaluator

df = sqlCtx.createDataFrame(
    [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0), (2, 2, 5.0)],
    ["user", "item", "rating"],
)

df_test = sqlCtx.createDataFrame(
    [(0, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)],
    ["user", "item"],
)

als = ALS()

param_grid = ParamGridBuilder().addGrid(
    als.rank,
    [10, 15],
).addGrid(
    als.maxIter,
    [10, 15],
).build()

evaluator = RegressionEvaluator(
    metricName="rmse",
    labelCol="rating",
)
tvs = TrainValidationSplit(
    estimator=als,
    estimatorParamMaps=param_grid,
    evaluator=evaluator,
)


model = tvs.fit(df)

问题:如何获得最佳排名和最大化?

1 个答案:

答案 0 :(得分:4)

您可以使用bestModelTrainValidationSplitModel属性访问最佳模型:

best_model = model.bestModel

可以使用rankALSModel属性直接访问Rank:

best_model.rank
10

获得最大迭代次数需要更多的诡计:

(best_model
    ._java_obj     # Get Java object
    .parent()      # Get parent (ALS estimator)
    .getMaxIter()) # Get maxIter
10