我白天绘制了一堆价格数据。认为股票交易是白天的。
我想做什么:
问题:
当我在查询中查看Django调试工具栏时,我看到:
如何
我有一个视图,继承自GraphView,我已经返回了返回对象价格所需的数据。使用此请求可能会返回数千个结果,尽可能提高查询效率对于加载时间非常重要。
使用的工具:
观点&查询:
class GraphView(TemplateView):
def get_dates(self):
dates = []
if self.get_queryset():
start = self.get_queryset()[0][2].date()
end = datetime.today().date()
delta = end - start
for i in range(delta.days + 1):
dates.append(start + timedelta(days=i))
return dates
def trend_line(self):
trades = self.get_queryset()
dates = self.get_dates()
data_x = []
data_y = []
for date in dates:
subset = trades.filter(date_of_price__date=date)
prices_for_day = subset.aggregate(Avg('price'))
if prices_for_day['price__avg'] > 0:
data_x.append(date.strftime('%Y-%m-%d'))
data_y.append(prices_for_day['price__avg'])
return data_x, data_y
def get_context_data(self, **kwargs):
context = super(GraphView, self).get_context_data(**kwargs)
x_axis_date = []
y_axis_price = []
bubble_text = []
for trade in self.get_queryset():
x_axis_date.append(trade[2].date().strftime('%Y-%m-%d'))
y_axis_price.append(int(trade[1]))
desc = "#%s" % (trade[0])
bubble_text.append(str(desc.encode('ascii', 'ignore')))
trend_data_x, trend_data_y = self.trend_line()
try:
x_axis_date_start = x_axis_date[0]
except IndexError:
x_axis_date_start = None
try:
x_axis_date_end = x_axis_date[-1]
except IndexError:
x_axis_date_end = None
context.update({
"x_axis_date": x_axis_date,
"x_axis_date_start": x_axis_date_start,
"x_axis_date_end": x_axis_date_end,
"y_axis_price": y_axis_price,
"bubble_text": bubble_text,
"trend_data_x": trend_data_x,
"trend_data_y": trend_data_y,
})
return context
class ReferenceDetailView(StaffuserRequiredMixin, SetHeadlineMixin, GraphView):
headline = "Variation Detail"
template_name = "ref_trades/reference_detail.html"
def get_reference_model(self):
return get_object_or_404(ReferenceModel, pk=self.kwargs["pk"])
def get_headline(self):
return "%s" % self.get_reference_model()
def get_queryset(self):
return TradeModel.objects.filter(
date_of_price__gte=datetime.now() - timedelta(days=365),
reference_model__id=self.kwargs["pk"]
).exclude(price=0).values_list('id', 'price' , 'date_of_price', 'title')
谢谢
感谢您的帮助!
答案 0 :(得分:1)
您可以检索按日期排序的所有对象,然后使用itertools.groupby()
将其拆分为日期,而不是每天执行查询。
def data_points(self):
trades = self.get_queryset()
data_x = []
data_y = []
for date, subset in itertools.groupby(trades, lambda t: t.date):
average_price = average(subset) # average() needs to be implemented
if average_price > 0:
data_x.append(date.strftime('%Y-%m-%d'))
data_y.append(average_price)
return data_x, data_y
此方法将Web服务器CPU换成DB CPU / IO,这可能是也可能不是最佳方法,具体取决于您的基础架构