使用本地java程序我可以访问vps上的数据库,其中涉及的表平均有大约1,500条记录。
不幸的是,尽管记录并不多,但我提取的性能问题大约为10秒。
查询如下:
SELECT DISTINCT P.advanced_stock_management,
PA.id_product, PA.reference, PL.name,
round(P.wholesale_price,2),
round((P.price + P.price * 22 / 100), 2),
round(SP.reduction,2),
SA.quantity, PQ.is_true
FROM db.ps_product AS P
INNER JOIN db.ps_product_attribute AS PA
ON P.id_product=PA.id_product
INNER JOIN db.ps_product_lang AS PL
ON PA.id_product=PL.id_product
INNER JOIN db.ps_stock_available AS SA
ON SA.id_product_attribute=PA.id_product_attribute
LEFT OUTER JOIN db.ps_product_quantity_real AS PQ
ON PA.id_product=PQ.id_product
AND PA.reference=PQ.reference
LEFT OUTER JOIN db.ps_specific_price AS SP
ON PA.id_product=SP.id_product
WHERE P.active = 1;
如何改进查询结构并提高性能?
提前致谢。
答案 0 :(得分:0)
您应该在以下列中拥有适当的索引:
table_name (column_name)
ps_product (id_product)
ps_product_attribute (id_product)
ps_product_attribute (reference)
ps_product_attribute (id_product_attribute)
ps_product_lang (id_product)
ps_stock_available (id_product_attribute)
ps_product_quantity_real (id_product)
ps_product_quantity_real (reference)
ps_specific_price (id_product)
答案 1 :(得分:0)
通过适当的缩进重写查询:
SELECT DISTINCT
product.advanced_stock_management,
attribute.id_product,
attribute.reference,
lang.name,
round(product.wholesale_price,2),
round((product.price + product.price * 22 / 100),2),
round(price.reduction,2),
availablity.quantity,
quantity.is_true
FROM db.ps_product AS product
INNER JOIN db.ps_product_attribute AS attribute
ON product.id_product = attribute.id_product
INNER JOIN db.ps_product_lang AS lang
ON lang.id_product = attribute.id_product
INNER JOIN db.ps_stock_available AS availablity
ON availablity.id_product_attribute = attribute.id_product_attribute
LEFT OUTER JOIN db.ps_product_quantity_real AS quantity
ON attribute.id_product = quantity.id_product
AND attribute.reference = quantity.reference
LEFT OUTER JOIN db.ps_specific_price AS price
ON price.id_product = attribute.id_product
WHERE product.active = 1;
我们可以看到中央表实际上是ps_product_attribute
。让它成为查询的开始:
SELECT DISTINCT
product.advanced_stock_management,
attribute.id_product,
attribute.reference,
lang.name,
round(product.wholesale_price,2),
round((product.price + product.price * 22 / 100),2),
round(price.reduction,2),
availablity.quantity,
quantity.is_true
FROM db.ps_product_attribute AS attribute
INNER JOIN db.ps_product AS product
ON attribute.id_product = product.id_product
INNER JOIN db.ps_product_lang AS lang
ON attribute.id_product = lang.id_product
INNER JOIN db.ps_stock_available AS availablity
ON attribute.id_product_attribute = availablity.id_product_attribute
LEFT OUTER JOIN db.ps_product_quantity_real AS quantity
ON attribute.id_product = quantity.id_product
AND attribute.reference = quantity.reference
LEFT OUTER JOIN db.ps_specific_price AS price
ON attribute.id_product = price.id_product
WHERE product.active = 1;
现在查询看起来非常好。
您是否在此查询中的每个字段上都有索引?如果没有,你应该!
ALTER TABLE `ps_product_attribute` ADD INDEX `id_product` (`id_product`)
ALTER TABLE `ps_product_attribute` ADD INDEX `reference` (`reference`)
ALTER TABLE `ps_product` ADD INDEX `id_product` (`id_product`)
ALTER TABLE `ps_product_lang` ADD INDEX `id_product` (`id_product`)
ALTER TABLE `ps_stock_available` ADD INDEX `id_product_attribute` (`id_product_attribute`)
ALTER TABLE `ps_product_quantity_real` ADD INDEX `id_product` (`id_product`)
ALTER TABLE `ps_product_quantity_real` ADD INDEX `reference` (`reference`)
ALTER TABLE `ps_specific_price` ADD INDEX `id_product` (`id_product`)
使用此数据库大小,查询应在1秒内运行。
答案 2 :(得分:-1)
你有两个选择
在内存中预取1500条记录,然后使用记录匹配(无数据库)加入。预取提供了从数据库访问记录的速度和移除的网络延迟,但是记录匹配将是缓慢和令人厌烦的。
将apache spark与本地群集( bigdata join )一起使用。我亲自在9ms内执行了100万* 2的加入。这必须仅使用内存中RDD
来实现。