我是这个主题的新手。我尝试做的是为不同参数的相同数据集训练许多SVM(我希望将来可以使用不同类型的图像签名)然后预测每个SVM并接受最常找到的类。
我试图阅读许多人关于SVM图像训练的代码,但是在我的代码中无法弄清楚我做错了什么。我试过什么,svm.Predict总是返回0。
非常感谢任何帮助或提示。
internal class SVMClassifier
{
Dictionary<int, string> classIndex_name;
List<SVM> svms;
internal void Train(string trainFolder)
{
this.classIndex_name = new Dictionary<int, string>();
Dictionary<int, List<Mat>> class_mats = getMats(trainFolder, this.classIndex_name);
this.svms = new List<SVM>();
Mat samples; Mat responses;
getTrainingData(class_mats, out samples, out responses);
svms.Add(trainSVM(samples, responses));
svms.Add(trainSVM(samples, responses, SVM.SvmType.CSvc, SVM.SvmKernelType.Linear, 0d, 0d, 10d, TermCritType.Iter | TermCritType.Eps, 1000, 0.000001d, 0d, 0d));
svms.Add(trainSVM(samples, responses, SVM.SvmType.CSvc, SVM.SvmKernelType.Rbf, 100d, 100d, 1d, TermCritType.Iter | TermCritType.Eps, 1000, 0.000001d, 0.1d, 0.5d));
samples.Dispose(); responses.Dispose();
foreach (Mat mat in class_mats.Values.SelectMany((a) => a))
mat.Dispose();
}
private static Dictionary<int, List<Mat>> getMats(string trainFolder, Dictionary<int, string> classIndex_name)
{
Dictionary<int, List<Mat>> class_mats = new Dictionary<int, List<Mat>>();
DirectoryInfo diTrain = new DirectoryInfo(trainFolder);
int i = 0;
foreach (var di in diTrain.GetDirectories())//classes are according to the directories
{
var dirName = di.Name;
classIndex_name[i] = dirName;
var fileNames = di.GetFiles().Select((a) => a.FullName).ToList();
fileNames.Sort(new Dece.Misc.NumericSuffixFileFullNameComparer());
class_mats[i] = fileNames.Select((a) => getMat(a, true)).ToList();
i++;
}
return class_mats;
}
private static SVM trainSVM(Mat samples, Mat responses,
SVM.SvmType? svm_Type = null, SVM.SvmKernelType? svm_KernelType = null, double? gamma = null, double? degree = null, double? c = null,
TermCritType? criteriaType = null, int? criteriaMaxCount = null, double? criteriaEps = null, double? p = null, double? nu=null)
{
SVM svm = new SVM();
if (svm_Type != null) svm.Type = (SVM.SvmType)svm_Type;
if (svm_KernelType != null) svm.SetKernel((SVM.SvmKernelType)svm_KernelType);
if (gamma != null) svm.Gamma = (double)gamma;
if (degree != null) svm.Degree = (double)degree;
if (c != null) svm.C = (double)c;
if ((criteriaType != null) || (criteriaMaxCount != null) || (criteriaEps != null))
{
var t = new MCvTermCriteria((int)criteriaMaxCount, (double)criteriaEps);
if (criteriaType != null) t.Type = (TermCritType)criteriaType;
svm.TermCriteria = t;
}
if (p != null) svm.P = (double)p;
if (nu != null) svm.Nu = (double)nu;
if (!svm.Train(samples, DataLayoutType.RowSample, responses))
throw new Exception();
return svm;
}
private static void getTrainingData(Dictionary<int, List<Mat>> class_mats, out Mat samples, out Mat responses)
{
samples = null;
List<int> lstResp = new List<int>();
foreach (int cls in class_mats.Keys)
{
int count = 0;
foreach (Mat mat in class_mats[cls])
using (var desc = mat.Reshape(0, 1))
{
if (samples == null)
samples = new Mat(desc.Cols, 0, desc.Depth, 1);
samples.PushBack(desc);
count += desc.Rows;
}
for (int i = 0; i < count; i++)
lstResp.Add(cls);
}
//responses = new Mat(new Size(lstResp.Count, 1), DepthType.Cv32S, 1);
//for (int i = 0; i < lstResp.Count; i++)
// responses.SetValue(0, i, lstResp[i]);
responses = new Mat(new Size(1, lstResp.Count), DepthType.Cv32S, 1);
for (int i = 0; i < lstResp.Count; i++)
responses.SetValue(i, 0, lstResp[i]);
if (samples.Depth != DepthType.Cv32F)
samples.ConvertTo(samples, DepthType.Cv32F);
CvInvoke.Normalize(samples, samples, -1, 1, NormType.MinMax);
}
internal void Detect(IEnumerable<string> fileNames, Action<ShapeInfo> detected)
{
foreach (var fn in fileNames)
using (Mat mat = getMat(fn, false))
{
{
using (var samples = mat.Reshape(0, 1))
{
if (samples.Depth != DepthType.Cv32F)
samples.ConvertTo(samples, DepthType.Cv32F);
CvInvoke.Normalize(samples, samples, -1, 1, NormType.MinMax);
foreach (var svm in this.svms)
{
Mat res = new Mat();
float p0 = svm.Predict(samples, res, 0);
float p1 = svm.Predict(samples, res, 1);
float p2 = svm.Predict(samples, res, 2);
float p3 = svm.Predict(samples, res, 3);
float p4 = svm.Predict(samples, res, 4);
float p = svm.Predict(samples, res);
foreach (var val in toIEnumerable(p0, p1, p2, p3, p4, p))
if (val != 0f)
{
System.Windows.Forms.MessageBox.Show("never enters here :(");
}
}
}
}
}
}
private static Mat getMat(string fn, bool train)
{
var mat = new Mat(fn, ImreadModes.Grayscale);
mat.Resize(new Size(128, 128));
return mat;
}
private static IEnumerable<T> toIEnumerable<T>(params T[] items)
{
if (items != null)
foreach (var item in items)
yield return item;
}
}
Mat.SetValue扩展名来自here。
我希望这样的问题对于这个网站的格式是有用的。如果不是这个问题可以封闭擦除,没问题。我试图了解我们应该如何训练带有图像的svm。
答案 0 :(得分:0)
分类问题让我觉得自己像个笨蛋。关于我如何使用svm的任何评论,应该做什么都是好的。
internal void Detect(IEnumerable<string> fileNames, Action<ShapeInfo> detected)
{
foreach (var fn in fileNames)
using (Mat mat = getMat(fn, false))
{
{
using (var samples = mat.Reshape(0, 1))
{
if (samples.Depth != DepthType.Cv32F)
samples.ConvertTo(samples, DepthType.Cv32F);
CvInvoke.Normalize(samples, samples, -1, 1, NormType.MinMax);
foreach (var svm in this.svms)
{
float p = svm.Predict(samples, null);
}
}
}
}
}