我正在处理我尝试加载的凌乱的csv文件。如果我对行号进行硬编码,readLines
似乎可以完成这项工作:
readLines(file_path, n = 31)
我需要的是,它使n
(或skip
)参数变量能够使我的函数更加健壮。
我需要n
:
Data
,不是在同一时间。我将使用单独的电话。
实现这一目标的潜在选择是什么?我可以想到which
,is.na
或grep
,但我不知道如何在这种特殊情况下使用它们。
我知道如何在阅读完文件后清理文件,但我想避免这一步(如果可能,只读取文件的一部分)。
你能想到一个解决方案吗?
我的数据是ETG-4000 fNIRS的输出。
这是整个文件:
messy_data <- c("Header,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "File Version,1.08,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Patient Information,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"ID,someID,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "Name,someName,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Comment,someComment,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Age,23,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "Sex,Male,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Analyze Information,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"AnalyzeMode,Continuous,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Pre Time[s],20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Post Time[s],20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Recovery Time[s],40,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Base Time[s],20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Fitting Degree,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"HPF[Hz],No Filter,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"LPF[Hz],No Filter,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Moving Average[s],5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Measure Information,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Date,17/12/2016 12:15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Mode,3x3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "Wave[nm],695,830,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Wave Length,CH1(699.2),CH1(828.2),CH2(697.2),CH2(826.7),CH3(699.2),CH3(828.2),CH4(697.5),CH4(827.8),CH5(697.2),CH5(826.7),CH6(697.5),CH6(827.8),CH7(697.5),CH7(827.8),CH8(698.8),CH8(828.7),CH9(697.5),CH9(827.8),CH10(698.7),CH10(830.2),CH11(698.8),CH11(828.7),CH12(698.7),CH12(830.2),CH13(698.3),CH13(825.7),CH14(697.5),CH14(826.6),CH15(698.3),CH15(825.7),CH16(699.1),CH16(825.9),CH17(697.5),CH17(826.6),CH18(699.1),CH18(825.9),CH19(699.1),CH19(825.9),CH20(698.7),CH20(825.2),CH21(699.1),CH21(825.9),CH22(697.7),CH22(825.7),CH23(698.7),CH23(825.2),CH24(697.7),CH24(825.7)",
"Analog Gain,6.980392,6.980392,6.980392,6.980392,24.235294,24.235294,6.980392,6.980392,18.745098,18.745098,24.235294,24.235294,18.745098,18.745098,24.235294,24.235294,531.764706,531.764706,18.745098,18.745098,531.764706,531.764706,531.764706,531.764706,42.823529,42.823529,42.823529,42.823529,34.352941,34.352941,42.823529,42.823529,8.54902,8.54902,34.352941,34.352941,8.54902,8.54902,34.352941,34.352941,6.039216,6.039216,8.54902,8.54902,6.039216,6.039216,6.039216,6.039216",
"Digital Gain,7.67,4.19,7,4.41,7.48,3.02,9.94,5.87,5.05,2.62,8.09,3.83,9.9,5.47,55.48,19.09,9.47,3.27,46.93,19.65,18.88,5.08,41.32,10.19,1.54,0.57,0.39,0.16,1.46,0.37,0.11,0.06,1.2,0.52,0.24,0.08,0.26,0.18,0.27,0.07,0.11,0.06,0.08,0.07,1.17,0.44,0.27,0.21",
"Sampling Period[s],0.1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"StimType,STIM,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Stim Time[s],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"A,45,B,100,C,15,D,15,E,15,F,15,G,15,H,15,I,15,J,15,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Repeat Count,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Exception Ch,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,,,,,,,,,,,,,,,,,,,,,,,",
",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,",
"Data,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "Probe1(Total),CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8,CH9,CH10,CH11,CH12,CH13,CH14,CH15,CH16,CH17,CH18,CH19,CH20,CH21,CH22,CH23,CH24,Mark,Time,BodyMovement,RemovalMark,PreScan,,,,,,,,,,,,,,,,,,,"
)
答案 0 :(得分:2)
我认为这很可能是一个坏主意,因为它更有可能减缓过程,而不是加快速度。我可以看到,如果你有一个非常大的文件,通过这样做可以避免很大一部分文件,可能会有一个好处。
library( readr )
line <- 0L
input <- "start"
while( !grepl( "Data", input ) & input != "" ) {
line <- line + 1L
input <- read_lines( file, skip = line - 1L, n_max = 1L )
}
line
我们一次读一行。对于每一行,我们检查文本“数据”或空行。如果满足任一条件,我们就会停止阅读,这会留下line
,这个值告诉我们第一行不被读入。这样你就可以调用类似的东西: / p>
df <- read_lines( file, n_max = line - 1L )
更新:根据@ konvas的建议,添加一个同时测试和读取的选项。
read_with_condition <- function( file, lines.guess = 100L ) {
line <- 1L
output <- vector( mode = "character", length = lines.guess )
input <- "start"
while( !grepl( "Data", input ) & input != "" ) {
input <- readr::read_lines( file, skip = line - 1L, n_max = 1L )
output[line] <- input
line <- line + 1L
}
# discard any unwanted space in the output vector
# this will also discard the last line to be read in (which failed the test)
output <- output[ seq_len( line - 2L ) ]
cat( paste0( "Stopped reading at line ", line - 1L, ".\n" ) )
return( output )
}
new <- read_with_condition( file, lines.guess = 100L )
所以这里我们测试输入条件,同时将输入行写入对象。您可以使用lines.guess
在输出向量中预先分配空间(一个好的猜测应该加快处理速度,在这里要慷慨而不是保守),并且最后会清除任何多余的空间。请注意,这是一个函数,因此最后一行new <- ...
显示了如何调用该函数。
答案 1 :(得分:1)
readr
附带了一个函数read_lines_chunked
,它有助于读取大文件,但是在满足条件时没有选项可以打破函数。
我可以看到实现目标的三种可能性
1)读取整个文件,只保留所需的行 - 我意识到这可能不适合你,否则你不会发布问题:)
lines <- readr::read_lines(file_path)
lines <- lines[seq(1, grep("Data", lines)[1] - 1)]
2)首先读取文件以查找n
然后再读第二遍以读取该值。一种方法是@rosscova的答案,另一种方法是使用一些外部工具,如gnu grep,第三种方法是使用read_lines_chunked
中的readr
,例如
n <- tryCatch(
readr::read_lines_chunked(
file = file_path,
callback = readr::DataFrameCallback$new(
function(x, pos) {
if (grepl("Data", x)) stop(pos - 1)
}
),
chunk_size = 1
),
error = function(e) as.numeric(e$message)
)
lines <- readLines(file_path, n = n)
3)仅浏览一次文件,保存每一行直到满足条件。为此,您可以相应地修改@rosscova的脚本(将“输入”保存到变量)或再次使用read_lines_chunked
lines <- character(1e6) # pre-allocate some space, depending on how
# many lines you are expecting to get
# Define a callback function to read a line and save it; if it meets
# the condition, it breaks by throwing an error
cb <- function(x, pos) {
if (grepl("Data", x)) {
# condition met, save only lines up to the current one and break
lines <<- lines[seq(pos - 1)]
stop(paste("Stopped reading on line", pos))
}
lines[[pos]] <<- x # condition not met yet, save the current line
}
# now call the above in read_lines_chunked
# need to wrap in tryCatch to handle the error
tryCatch(
readr::read_lines_chunked(
file = file_path,
callback = readr::DataFrameCallback$new(cb),
chunk_size = 1,
),
error = identity
)
一般来说,这涉及一些不好的做法,包括使用<<-
所以要小心使用!
以上所有内容都可以使用data.table::fread
完成,这应该比readr
更快。
方法1对于小文件肯定是最快的。
如果您可以在大文件上对其中一些进行基准测试并告诉我们哪个是最快的,那会很棒!