这个问题对我来说似乎很简单,但我找不到答案。
假设你想从正态分布中取出大小为n的样本,其均值为10,方差为1,然后得到它们的平均值和方差,以验证样本来自正态分布。
我想这会是这样的:
values = take n $ sample (normal 10 1)
(avg values, variance values)
我正在尝试使用库random-fu,所以如果你能用lib提供答案,我真的很感激。
答案 0 :(得分:7)
这里的尴尬始终存在于Haskell中随机性 - 因为Haskell是纯粹的,你需要有某种“随机”源。 random-fu
为此目的使用RandomSource
,然后当你想操纵随机值时,你在这个monad中工作。
import Data.Random
import Control.Monad (replicateM)
average :: [Double] -> Double
average xs = sum xs / fromIntegral (length xs)
variance :: [Double] -> Double
variance xs = average [ (x - m)^2 | x <- xs ]
where m = average xs
main :: IO ()
main = do
sample <- runRVar (replicateM 10 (normal 10 1)) StdRandom :: IO [Double]
putStrLn $ "Average: " ++ show (average sample)
putStrLn $ "Variance: " ++ show (variance sample)
试运行似乎给了我合理的输出:
ghci> main
Average: 10.294887142436771
Variance: 0.7129578122237161
ghci> main
Average: 9.677325092160597
Variance: 0.9894150286175698
ghci> main
Average: 9.714089727813253
Variance: 1.0279068711054316
ghci> main
Average: 10.32028785267642
Variance: 0.8574243439019995
ghci> main
Average: 9.696843993234065
Variance: 0.45301180269725994