我正在尝试将平面CSV转换为嵌套的JSON格式。这是我的数据:
# data.csv
company_id,company_name,income_type,income_amt
1,"Foobar Inc","royalties",5000000
2,"ACME Corp","sales",3000000
2,"ACME Corp","rent",1000000
需要转换为以下JSON结构:
{"data": [{
"company_id": 1,
"name": "Foobar Inc",
"income": ["royalties": 5000000]
},
{
"company_id": 2,
"company_name": "ACME Corp",
"income": [
"sales": 3000000,
"rent": 1000000
]
}]
}
但是我当前的代码(基于this并使用Python和pandas库):
# script.py
import json
import pandas as pd
df = pd.read_csv('data.csv')
def get_nested_rec(key, grp):
rec = {}
rec['company_id'] = key[0]
rec['company_name'] = key[1]
for field in ['income_type']:
income_types = list(grp[field].unique())
rec['income'] = income_types
return rec
records = []
for key, grp in df.groupby(['company_id','company_name','income_type','income_amt']):
rec = get_nested_rec(key, grp)
records.append(rec)
records = dict(data = records)
print(json.dumps(records, indent=4))
输出以下格式:
{"data": [
{
"company_id": 1,
"company_name": "Foobar Inc",
"income": [
"royalties"
]
},
{
"company_id": 2,
"company_name": "ACME Corp",
"income": [
"sales"
]
},
{
"company_id": 2,
"company_name": "ACME Corp",
"income": [
"rent"
]
}
]}
在确定如何将具有相同company_id
的行组合到单个对象中时添加墙,并添加income_amt
值。
答案 0 :(得分:1)
你可以这样做:
for key, grp in df.groupby('company_id'):
records.append({
"company_id": key,
"company_name": grp.company_name.iloc[0],
"income": {
row.income_type: row.income_amt for row in grp.itertuples()
}})
这会给你:
[{'company_id': 1,
'company_name': 'Foobar Inc',
'income': {'royalties': 5000000}},
{'company_id': 2,
'company_name': 'ACME Corp',
'income': {'rent': 1000000, 'sales': 3000000}}]