在python中移动食物避免蛇游戏的死胡同

时间:2017-01-24 18:34:23

标签: python search tree pygame artificial-intelligence

我正在尝试进行蛇游戏,其中2条蛇相互竞争。一条蛇只是跟着食物,避开障碍,另一条是我正在编写代码的那条蛇,并且应该找到最好的方法来获取食物。食物的位置,地图的每一点和另一条蛇的位置都是已知的,食物的位置会随着蛇的每次移动而改变。

如果地图允许,如果没有障碍物,蛇可以穿过墙壁,转到地图的另一侧,就像地图是甜甜圈一样。蛇不会沿对角线方向移动,只能垂直和水平移动,并且不能向后移动。

我正在使用跳跃点搜索来寻找食物的方法,并且它工作正常,尽管有时候游戏速度会慢下来50fps。 我遇到的主要问题是找到避免死路的方法。如果食物陷入死胡同,我想等待它离开死胡同,但发生的事情是我的蛇,去那里,然后死去。因为我没有避免死胡同,当我的蛇足够大时,它有时会在自己的身体内崩溃。

这是我蛇的代理人的代码。

class AgentStudent(Snake, SearchDomain):
def __init__(self, body=[(0, 0)], direction=(1, 0), name="punkJD"):
    super().__init__(body, direction, name=name)
    self.count = 0;

#given the current state, and the next state, it returns a direction ( (1,0), (-1,0), (0,1), (0,-1) )
def dir(self, state, n_state):
    if state[0] == 0 and n_state[0] == (self.mapsize[0] - 1):
        return left
    elif state[0] == (self.mapsize[0] - 1) and n_state[0] == 0:
        return right
    elif state[1] == 0 and n_state[1] == (self.mapsize[1] - 1):
        return up
    elif state[1] == (self.mapsize[1] - 1) and n_state == 0:
        return down
    return n_state[0] - state[0], n_state[1] - state[1]

#doesn't matter for the question
def update(self, points=None, mapsize=None, count=None, agent_time=None):
    self.mapsize = mapsize
    return None

#given current position and food position, it will create a class that will do the search. Seach code bellow
def search_food(self, pos, foodpos):
    prob = SearchProblem(self, pos, foodpos, self.olddir)
    my_tree = SearchTree(prob, self.mapsize, self.maze)
    #doesn't matter, before i was using A*, but then i changed my whole search class
    my_tree.strategy = 'A*'
    return my_tree.search()

#given the current position and the direction the snake is faced it returns a list of all the possible directions the snake can take. If the current direction is still possible it will be put first in the list to be the first to be considered
def actions(self, pos, dir):
    dirTemp = dir
    invaliddir = [x for (x, y) in self.complement if y == dir]
    validdir = [dir for dir in directions if not (dir in invaliddir)]
    validdir = [dir for dir in validdir if
                not (self.result(pos, dir) in self.maze.obstacles or self.result(pos, dir) in self.maze.playerpos)]
    dirList = [dirTemp] if dirTemp in validdir else []
    if dirList != []:
        for a in range(len(validdir)):
            if validdir[a] != dirTemp:
                dirList.append(validdir[a])
        return dirList
    return validdir

#given the current position and the current direction, it returns the new position
def result(self, a, b):
    n_pos = a[0] + b[0], a[1] + b[1]
    if n_pos[0] == -1:
        n_pos = (self.mapsize[0] - 1), a[1] + b[1]
    if n_pos[1] == -1:
        n_pos = a[0] + b[0], (self.mapsize[1] - 1)
    if n_pos[0] == (self.mapsize[0]):
        n_pos = 0, a[1] + b[1]
    if n_pos[1] == (self.mapsize[1]):
        n_pos = a[0] + b[0], 0
    return n_pos

#given the current position and food position it returns the manhattan distance heuristic
def heuristic(self, position, foodpos):
    distancex = min(abs(position[0] - foodpos[0]), self.mapsize[0] - abs(position[0] - foodpos[0]))
    distancey = min(abs(position[1] - foodpos[1]), self.mapsize[1] - abs(position[1] - foodpos[1]))
    return distancex + distancey

#this function is called by the main module of the game, to update the position of the snake
def updateDirection(self, maze):
    # this is the brain of the snake player
    self.olddir = self.direction
    position = self.body[0]
    self.maze = maze
    # new direction can't be up if current direction is down...and so on
    self.complement = [(up, down), (down, up), (right, left), (left, right)]


    self.direction = self.search_food(position, self.maze.foodpos)

Bellow是进行搜索的代码。 我重用了一些类的文件进行树搜索,并将其更改为使用跳转点搜索。对于每个跳跃点,我发现我在树中展开了一个节点。

class SearchDomain:

def __init__(self):
    abstract

def actions(self, state):
    abstract

def result(self, state, action):
    abstract

def cost(self, state, action):
    abstract

def heuristic(self, state, goal_state):
    abstract

class SearchProblem:
def __init__(self, domain, initial, goal,dir):
    self.domain = domain
    self.initial = initial
    self.goal = goal
    self.dir = dir
def goal_test(self, state):
    return state == self.goal

# class that defines the nodes in the tree. It has some attributes that are not used due to my old aproach.
class SearchNode:
def __init__(self,state,parent,heuristic,dir,cost=0,depth=0):
    self.state = state
    self.parent = parent
    self.heuristic = heuristic
    self.depth = depth
    self.dir = dir
    self.cost = cost
    if parent!=None:
        self.cost = cost + parent.cost
def __str__(self):
    return "no(" + str(self.state) + "," + str(self.parent) + "," + str(self.heuristic) + ")"
def __repr__(self):
    return str(self)

class SearchTree:


def __init__(self,problem, mapsize, maze, strategy='breadth'): 
    #attributes used to represent the map in a matrix
    #represents obstacle
    self.OBS = -1
    #represents all the positions occupied by both snakes
    self.PPOS = -2
    #represents food position
    self.FOODPOS = -3
    #represents not explored
    self.UNIN = -4
    self.problem = problem
    h = self.problem.domain.heuristic(self.problem.initial,self.problem.goal)
    self.root = SearchNode(problem.initial, None,h,self.problem.dir)
    self.open_nodes = [self.root]
    self.strategy = strategy
    self.blacklist = []
    self.pqueue = FastPriorityQueue()
    self.mapa = maze
    #here i initialize the matrix to represent the map
    self.field = []
    for a in range(mapsize[0]):
        self.field.append([])
        for b in range(mapsize[1]):
            self.field[a].append(self.UNIN)
    for a,b in maze.obstacles:
        self.field[a][b] = self.OBS
    for a,b in maze.playerpos:
        self.field[a][b] = self.PPOS
    self.field[maze.foodpos[0]][maze.foodpos[1]] = self.FOODPOS
    self.field[self.root.state[0]][self.root.state[1]] = self.UNIN


#function to add a jump point to the priority queue
def queue_jumppoint(self,node):
    if node is not None:
        self.pqueue.add_task(node, self.problem.domain.heuristic(node.state,self.problem.goal)+node.cost)

# given a node it returns the path until the root of the tree
def get_path(self,node):
    if node.parent == None:
        return [node]
    path = self.get_path(node.parent)
    path += [node]
    return(path)

#Not used in this approach
def remove(self,node):
    if node.parent != None:
        a = self.problem.domain.actions(node.parent.state, node.dir)
        self.blacklist+=node.state
        if a == []:
            self.remove(node.parent)
    node = None



#Function that searches for the food
def search(self):
    tempNode = self.root
    self.queue_jumppoint(self.root)
    count = 0
    while not self.pqueue.empty():
        node = self.pqueue.pop_task()
        actions = self.problem.domain.actions(node.state,node.dir)
        if count == 1:
            tempNode = node
        count+=1

        #for every possible direction i call the explore function that finds a jump point in a given direction
        for a in range(len(actions)):
            print (a)
            print (actions[a])
            jumpPoint = self.explore(node,actions[a])
            if jumpPoint != None:
                newnode = SearchNode((jumpPoint[0],jumpPoint[1]),node,self.problem.domain.heuristic(node.state,self.problem.goal),actions[a],jumpPoint[2])
                if newnode.state == self.problem.goal:
                    return self.get_path(newnode)[1].dir
                self.queue_jumppoint(newnode)

    dirTemp = tempNode.dir
    return dirTemp

#Explores the given direction, starting in the position of the given node, to find a jump point
def explore(self,node,dir):
    pos = node.state

    cost = 0

    while (self.problem.domain.result(node.state,dir)) != node.state:

        pos = self.problem.domain.result(pos, dir)
        cost += 1

        #Marking a position as explored
        if self.field[pos[0]][pos[1]] == self.UNIN or self.field[pos[0]][pos[1]] == self.PPOS:
            self.field[pos[0]][pos[1]] = 20
        elif pos[0] == self.problem.goal[0] and pos[1] == self.problem.goal[1]:  # destination found
            return pos[0],pos[1],cost
        else:
            return None

        #if the snake is going up or down
        if dir[0] == 0: 

            #if there is no obstacle/(or body of any snake) at the right but in the previous position there was, then this is a jump point
            if (self.field [self.problem.domain.result(pos,(1,0))[0]] [pos[1]] != self.OBS and self.field [self.problem.domain.result(pos,(1,0))[0]] [self.problem.domain.result(pos,(1,-dir[1]))[1]] == self.OBS) or \
            (self.field [self.problem.domain.result(pos,(1,0))[0]] [pos[1]] != self.PPOS and self.field [self.problem.domain.result(pos,(1,0))[0]] [self.problem.domain.result(pos,(1,-dir[1]))[1]] == self.PPOS):
                return pos[0], pos[1],cost

            #if there is no obstacle/(or body of any snake) at the left but in the previous position there was, then this is a jump point
            if (self.field [self.problem.domain.result(pos,(-1,0))[0]] [pos[1]] != self.OBS and self.field [self.problem.domain.result(pos,(-1,0))[0]] [self.problem.domain.result(pos,(1,-dir[1]))[1]] == self.OBS) or \
            (self.field [self.problem.domain.result(pos,(-1,0))[0]] [pos[1]] != self.PPOS and self.field [self.problem.domain.result(pos,(-1,0))[0]] [self.problem.domain.result(pos,(1,-dir[1]))[1]] == self.PPOS):
                return pos[0], pos[1],cost

        #if the snake is going right or left
        elif dir[1] == 0:

            #if there is no obstacle/(or body of any snake) at the upper part but in the previous position there was, then this is a jump point
            if (self.field [pos[0]][self.problem.domain.result(pos,(1,1))[1]] != self.OBS and self.field [self.problem.domain.result(pos,(-dir[0],dir[1]))[0]] [self.problem.domain.result(pos,(1,1))[1]] == self.OBS) or \
            (self.field [pos[0]][self.problem.domain.result(pos,(1,1))[1]] != self.PPOS and self.field [self.problem.domain.result(pos,(-dir[0],dir[1]))[0]] [self.problem.domain.result(pos,(1,1))[1]] == self.PPOS):
                return pos[0], pos[1],cost

            #if there is no obstacle/(or body of any snake) at the down part but in the previous position there was, then this is a jump point
            if (self.field [pos[0]] [self.problem.domain.result(pos,(-1,-1))[1]] != self.OBS and self.field [self.problem.domain.result(pos,(-dir[0],dir[1]))[0]] [self.problem.domain.result(pos,(-1,-1))[1]] == self.OBS) or \
            (self.field [pos[0]] [self.problem.domain.result(pos,(-1,-1))[1]] != self.PPOS and self.field [self.problem.domain.result(pos,(-dir[0],dir[1]))[0]] [self.problem.domain.result(pos,(-1,-1))[1]] == self.PPOS):
                return pos[0], pos[1],cost

        #if the food is aligned in some way with the snake head, then this is a jump point
        if (pos[0] == self.mapa.foodpos[0] and node.state[0] != self.mapa.foodpos[0]) or \
        (pos[1] == self.mapa.foodpos[1] and node.state[1] != self.mapa.foodpos[1]):
            return pos[0], pos[1],cost

        #if the food is in front of the head of the snake, right next to it, then this is a jump point
        if self.field[self.problem.domain.result(pos,(dir[0],dir[1]))[0]][self.problem.domain.result(pos,(1,dir[1]))[1]] == self.FOODPOS:
            return pos[0], pos[1],cost

        ##if an obstacle is in front of the head of the snake, right next to it, then this is a jump point
        if self.field[self.problem.domain.result(pos,(dir[0],dir[1]))[0]][ self.problem.domain.result(pos,(1,dir[1]))[1]] == self.OBS:
            return pos[0], pos[1],cost



    return None


class FastPriorityQueue:

def __init__(self):
    self.pq = []                         # list of entries arranged in a heap
    self.counter = 0                     # unique sequence count

def add_task(self, task, priority=0):
    self.counter+=1
    entry = [priority, self.counter, task]
    heapq.heappush(self.pq, entry)

def pop_task(self):

    while self.pq:

        priority, count, task = heapq.heappop(self.pq)
        return task
    raise KeyError('pop from an empty priority queue')

def empty(self):

    return len(self.pq) == 0

这是我的代码。我将不胜感激任何帮助,以避免死路一条。 我搜索了类似的问题,但找不到任何帮助我。

1 个答案:

答案 0 :(得分:2)

StackOverflow不是编码服务,所以我不打算为你编写代码,但我绝对可以告诉你需要采取哪些步骤来解决你的问题。

在你的评论中,你说如果你能在比赛开始之前检查死胡同,那就太好了。死角可以被分类为具有三个或更多个正交相邻壁的任何点。我假设你想要每一个导致死胡同的点都是不可避免的。以下是您的检查方式:

  1. 从一个角开始检查每个点并移动到另一个,无论是行还是列,都没关系。一旦到达具有三个或更多正交相邻墙的点,将该点标记为死角,并转到2.
  2. 找到此点旁边的空白方向(如果有),并检查该方向上的每个点。对于每个点:如果它有两个或更多相邻的墙,请将其标记为死角。如果它只有一面墙,请转到3.如果没有墙,请停止朝这个方向检查并继续使用数字1。
  3. 在没有墙的每个方向上,重复2号。
  4. 按照以下步骤操作,直到步骤1检查了网格上的每个图块。

    如果您需要编程示例,请在评论中提出一个。我没有时间制作一个,但如果需要我可以制作一个。此外,如果您需要额外澄清,请询问!