状态存储的RocksDB实现无法处理我们的50k / msg速率,所以我想将状态存储更改为内存存储。根据文档http://docs.confluent.io/3.1.0/streams/architecture.html#state
,这应该是可能的但是,当我实现这个时:
val stateStore = Stores.create(stateStoreName).withStringKeys().withStringKeys().inMemory().build()
val procSuppl: KStreamAggregate = ... // I'll spare the implementation details
streamBuilder.addSource(
"mysource",
new StringDeserializer(),
new StringDeserializer(),
"input_topic"
).addProcessor("proc", procSuppl, "mysource").addStateStore(stateStore, "proc")
我在运行时结束了这个错误:
Caused by: java.lang.ClassCastException: org.apache.kafka.streams.state.internals.MeteredKeyValueStore cannot be cast to org.apache.kafka.streams.state.internals.CachedStateStore
2017-01-23T13:19:11.830674020Z at org.apache.kafka.streams.kstream.internals.KStreamAggregate$KStreamAggregateProcessor.init(KStreamAggregate.java:62)
上述方法的实施是:
public void init(ProcessorContext context) {
super.init(context);
store = (KeyValueStore<K, T>) context.getStateStore(storeName);
((CachedStateStore) store).setFlushListener(new ForwardingCacheFlushListener<K, V>(context, sendOldValues));
}
为什么要尝试将状态存储转换为CachedStateStore
实例?如何根据文档实现一个简单的内存状态存储?
由于
答案 0 :(得分:0)
这个问题有点老了,但是也许这个答案会帮助别人。
要创建内存存储,您需要创建存储供应商:
val storeSupplier = Stores.inMemoryKeyValueStore("in-mem")
然后,在实现KTable时需要使用商店供应商:
val wordCounts = builder.stream[String, String]("streams-plaintext-input")
.flatMapValues(textLine => textLine.toLowerCase.split("\\W+"))
.groupBy((_, word) => word)
.count()(Materialized.as(storeSupplier))
获取可查询的商店:
val qStore = streams.store(wordCounts.queryableStoreName, QueryableStoreTypes.keyValueStore[String, Long])