fitCopula用于R中的双变量数据

时间:2017-01-23 13:25:00

标签: r packages

我正在尝试使用的方法将Copula拟合成两个变量的样本 'copula'和'VineCopula'套餐,但我有两个问题。

  1. 首先,我的数据在[0,4]中有值,但是copulas需要数据在[0,1]的区间内,转换它们的程序是什么而没有松散它们的特征?
  2. 它给出错误的代码的最后一行,如下所示:

    > fit <- fitCopula(cop_model, m, method = 'ml') 
    Error in .local(u, copula, log, ...) : unused argument (checkPar = FALSE)
    
  3. 你有什么想法我做错了吗?

    # z <- my data - I know that is very small!!
    
    
        # the output of dput(z)
        structure(c(3.5448, 3.3863, 3.1097, 2.8126, 2.5005, 2.2661, 2.1308, 
        2.0771, 2.0377, 2.0769, 2.0608, 2.3478, 2.8888, 3.2404, 3.4623, 
        3.6302, 3.4086, 3.0667, 2.8401, 2.5854, 2.2845, 2.0605), .Dim = c(11L, 
        2L))
        # or 
    
        > z
                [,1]   [,2]
         [1,] 3.5448 2.3478
         [2,] 3.3863 2.8888
         [3,] 3.1097 3.2404
         [4,] 2.8126 3.4623
         [5,] 2.5005 3.6302
         [6,] 2.2661 3.4086
         [7,] 2.1308 3.0667
         [8,] 2.0771 2.8401
         [9,] 2.0377 2.5854
        [10,] 2.0769 2.2845
        [11,] 2.0608 2.0605
    
    
    
        m <- pobs(as.matrix(cbind(z[,1],z[,2])))
                selectedCopula <- BiCopSelect(m[,1],m[,2],familyset=NA)
                selectedCopula
    
        # Bivariate copula: Survival Joe (par = 2.11, tau=0.38) 
        # Pseudo observations are the observations in the [0,1] interval. 
        # But my data aren't in the [0,1]
    
        cop_model <- surJoeBiCopula(selectedCopula$par) 
        cop_model
    
        # method = mpl or ml
        fit <- fitCopula(cop_model, m, method = 'ml') 
    
           fit
    

0 个答案:

没有答案