我在python上使用tensorflow 我有一个形状的数据张量[?,5,37]和一个形状的idx张量[?,5]
我想从数据中提取元素并获得形状[?,5]的输出,以便:
output[i][j] = data[i][j][idx[i, j]] for all i in range(?) and j in range(5)
看起来lof tf.gather_nd()函数最接近我的需要,但我不知道如何在我的情况下使用它...
谢谢!
编辑:我设法用gather_nd完成,如下所示,但是有更好的选择吗? (看起来有点笨拙) nRows = tf.shape(length_label)[0] ==> ?
nCols = tf.constant(MAX_LENGTH_INPUT + 1, dtype=tf.int32) ==> 5
m1 = tf.reshape(tf.tile(tf.range(nCols), [nRows]),
shape=[nRows, nCols])
m2 = tf.transpose(tf.reshape(tf.tile(tf.range(nRows), [nCols]),
shape=[nCols, nRows]))
indices = tf.pack([m2, m1, idx], axis=-1)
# indices should be of shape [?, 5, 3] with indices[i,j]==[i,j,idx[i,j]]
output = tf.gather_nd(data, indices=indices)
答案 0 :(得分:1)
我设法使用void Start()
{
NetworkServer.Listen(9000);
NetworkServer.RegisterHandler(MsgType.Connect, OnConnected);
NetworkServer.RegisterHandler(MsgType.Disconnect, OnDisconnected);
NetworkServer.RegisterHandler(MsgType.Error, OnError);
}
public void OnConnected(NetworkMessage netMsg)
{
Debug.Log("Client Connected");
}
public void OnDisconnected(NetworkMessage netMsg)
{
Debug.Log("Disconnected");
}
public void OnError(NetworkMessage netMsg)
{
Debug.Log("Error while connecting");
}
执行此操作,如下所示
gather_nd