我正在编写一个简单的字符串解析器,它允许类似regexp的量词。输入字符串可能如下所示:
s = "x y{1,2} z"
我的解析器函数将此字符串转换为元组列表:
list_of_tuples = [("x", 1, 1), ("y", 1, 2), ("z", 1, 1)]
现在,棘手的一点是我需要一个由量化指定的所有有效组合的列表。组合都必须具有相同数量的元素,值None
用于填充。对于给定的示例,预期输出为
[["x", "y", None, "z"], ["x", "y", "y", "z"]]
我确实有一个可行的解决方案,但我对此并不满意:它使用了两个嵌套的for
循环,我发现代码有点模糊,所以通常很尴尬关于它的笨拙:
import itertools
def permute_input(lot):
outer = []
# is there something that replaces these nested loops?
for val, start, end in lot:
inner = []
# For each tuple, create a list of constant length
# Each element contains a different number of
# repetitions of the value of the tuple, padded
# by the value None if needed.
for i in range(start, end + 1):
x = [val] * i + [None] * (end - i)
inner.append(x)
outer.append(inner)
# Outer is now a list of lists.
final = []
# use itertools.product to combine the elements in the
# list of lists:
for combination in itertools.product(*outer):
# flatten the elements in the current combination,
# and append them to the final list:
final.append([x for x
in itertools.chain.from_iterable(combination)])
return final
print(permute_input([("x", 1, 1), ("y", 1, 2), ("z", 1, 1)]))
[['x', 'y', None, 'z'], ['x', 'y', 'y', 'z']]
我怀疑这样做的方式更为优雅,可能隐藏在itertools
模块的某个地方?
答案 0 :(得分:6)
解决问题的另一种方法是使用pyparsing
和此example regex parser将正则表达式扩展为可能的匹配字符串。对于您的x y{1,2} z
示例字符串,它会生成两个可能的字符串来扩展量词:
$ python -i regex_invert.py
>>> s = "x y{1,2} z"
>>> for item in invert(s):
... print(item)
...
x y z
x yy z
重复本身同时支持开放范围和闭合范围,并定义为:
repetition = (
(lbrace + Word(nums).setResultsName("count") + rbrace) |
(lbrace + Word(nums).setResultsName("minCount") + "," + Word(nums).setResultsName("maxCount") + rbrace) |
oneOf(list("*+?"))
)
为了达到预期的结果,我们应该修改从recurseList
生成器和返回列表而不是字符串产生结果的方式:
for s in elist[0].makeGenerator()():
for s2 in recurseList(elist[1:]):
yield [s] + [s2] # instead of yield s + s2
然后,我们只需要flatten the result:
$ ipython3 -i regex_invert.py
In [1]: import collections
In [2]: def flatten(l):
...: for el in l:
...: if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)):
...: yield from flatten(el)
...: else:
...: yield el
...:
In [3]: s = "x y{1,2} z"
In [4]: for option in invert(s):
...: print(list(flatten(option)))
...:
['x', ' ', 'y', None, ' ', 'z']
['x', ' ', 'y', 'y', ' ', 'z']
然后,如果需要,您可以过滤空白字符:
In [5]: for option in invert(s):
...: print([item for item in flatten(option) if item != ' '])
...:
['x', 'y', None, 'z']
['x', 'y', 'y', 'z']
答案 1 :(得分:2)
基于元组生成不同列表的部分可以使用列表解析来编写:
outer = []
for val, start, end in lot:
# For each tuple, create a list of constant length
# Each element contains a different number of
# repetitions of the value of the tuple, padded
# by the value None if needed.
outer.append([[val] * i + [None] * (end - i) for i in range(start, end + 1)])
(整个事情将再次与列表理解一起写,但它使代码更难以阅读恕我直言)。
另一方面,[x for x in itertools.chain.from_iterable(combination)]
中的列表理解可以用更简洁的方式编写。实际上,重点是从迭代中构建一个实际列表。这可以通过以下方式完成:list(itertools.chain.from_iterable(combination))
。另一种方法是使用sum
内置。我不确定哪个更好。
最后,final.append
部分可以用列表理解来编写。
# use itertools.product to combine the elements in the list of lists:
# flatten the elements in the current combination,
return [sum(combination, []) for combination in itertools.product(*outer)]
最终的代码只是基于你稍微重新编写的代码:
outer = []
for val, start, end in lot:
# For each tuple, create a list of constant length
# Each element contains a different number of
# repetitions of the value of the tuple, padded
# by the value None if needed.
outer.append([[val] * i + [None] * (end - i) for i in range(start, end + 1)])
# use itertools.product to combine the elements in the list of lists:
# flatten the elements in the current combination,
return [sum(combination, []) for combination in itertools.product(*outer)]
答案 2 :(得分:2)
递归解决方案(简单,最多可容纳几千个元组):
start == end
它受递归深度(~1000)的限制。如果还不够,可以对list_of_tuples
个案进行简单的优化。取决于>>> list(permutations(list_of_tuples)) # list() because it's an iterator
[['x', 'y', None, 'z'], ['x', 'y', 'y', 'z']]
的预期大小可能就足够了
测试:
def permutations(lot):
source = []
cnum = 1 # number of possible combinations
for item, start, end in lot: # create full list without Nones
source += [item] * (end-start+1)
cnum *= (end-start+1)
for i in range(cnum):
bitmask = [True] * len(source)
state = i
pos = 0
for _, start, end in lot:
state, m = divmod(state, end-start+1) # m - number of Nones to insert
pos += end-start+1
bitmask[pos-m:pos] = [None] * m
yield [bitmask[i] and c for i, c in enumerate(source)]
没有递归(通用但不太优雅):
xyyz
这个解决方案背后的想法:实际上,我们看起来像是一个完整的字符串(None
),尽管玻璃加了一定数量的(end-start+1)
。我们可以通过计算所有{{1}}的乘积来计算可能组合的数量。然后,我们可以对所有迭代(简单范围循环)进行编号,并从迭代次数重建此掩码。在这里,我们通过在状态数上迭代使用divmod并使用余数作为符号位置的Nones数来重建掩码