让我说我有
lags = [0, 30, 60, 90, 120, 150, 180, np.inf]
和
list = [[500, 800, 1000, 200, 1500], [220, 450, 350, 1070, 1780], [900, 450, 1780, 1450, 100],
[340, 670, 830, 1370, 1420], [850, 630, 1230, 1670, 910]]
angle = [[50, 80, 100, 20, 150], [22, 45, 35, 107, 178], [90, 45, 178, 145, 10],
[34, 67, 83, 137, 142], [85, 63, 123, 167, 91]]
我想将每个元素放在列表中,并根据其值将其存储在不同的单独数组中;
for all list.values where angles.value is less than 30
list1 = [200, 220, 100]
for all list.values where angles.value is between 30 and 60
list2 = [500, 450, 350, 450, 340]
for all list.values where angles.value is between 60 and 90
list3 = [800, 670, 830, 850, 630]
等。
我做了类似的事情:
sortlist = defaultdict(list)
ulist = np.unique(list)
uangle = np.unique(angle)
for lag in lags:
count += 1
for k, dummy_val in enumerate(uangle):
if lag <= uangle[k] < lag + 1:
sortlist[count].append(ulist[k])
我想知道是否有一种pythonic /有效的方法来提高性能。
答案 0 :(得分:5)
这是一种矢量化方法 -
an = angle.ravel()
sidx = an.argsort()
cut_idx = np.searchsorted(an[sidx], lags)
out = np.split(list1.ravel()[sidx], cut_idx[1:-1])
示例输入,输出 -
In [97]: lags = np.array([0, 30, 60, 90, 120, 150, 180, np.inf])
...:
...: list1 = np.array([[500, 800, 1000, 200, 1500], \
...: [220, 450, 350, 1070, 1780], \
...: [900, 450, 1780, 1450, 100],
...: [340, 670, 830, 1370, 1420], \
...: [850, 630, 1230, 1670, 910]])
...:
...: angle = np.array([[50, 80, 100, 20, 150],\
...: [22, 45, 35, 107, 178],\
...: [90, 45, 178, 145, 10],
...: [34, 67, 83, 137, 142],\
...: [85, 63, 123, 167, 91]])
...:
In [99]: out
Out[99]:
[array([100, 200, 220]), # <----- 0 to 30
array([340, 350, 450, 450, 500]), # <----- 30 to 60
array([630, 670, 800, 830, 850]), # <----- 60 to 90
array([ 900, 910, 1000, 1070]), # <----- 90 to 120
array([1230, 1370, 1420, 1450]), # <----- 120 to 150
array([1500, 1670, 1780, 1780]), # <----- 150 to 180
array([], dtype=int64)] # <----- 180 to Inf
答案 1 :(得分:4)
import numpy as np
lags = [0, 30, 60, 90, 120, 150, 180, np.inf]
alist = np.array([[500, 800, 1000, 200, 1500], [220, 450, 350, 1070, 1780], [900, 450, 1780, 1450, 100],
[340, 670, 830, 1370, 1420], [850, 630, 1230, 1670, 910]])
angle = np.array([[50, 80, 100, 20, 150], [22, 45, 35, 107, 178], [90, 45, 178, 145, 10],
[34, 67, 83, 137, 142], [85, 63, 123, 167, 91]])
i=0
while i<len(lags)-1:
print alist[(lags[i] <= angle) & (angle < lags[i+1] )]
i+=1
输出:
[200, 220, 100]
[500, 450, 350, 450, 340]
[800, 670, 830, 850, 630]
[1000, 1070, 900, 910]
[1450, 1370, 1420, 1230]
[1500, 1780, 1780, 1670]
[]
angle<lags[i]
将创建一个布尔索引,它将掩盖alist
中不需要的值。
zip()
和列表理解:import numpy as np
lags = [0, 30, 60, 90, 120, 150, 180, np.inf]
alist = [[500, 800, 1000, 200, 1500], [220, 450, 350, 1070, 1780], [900, 450, 1780, 1450, 100],
[340, 670, 830, 1370, 1420], [850, 630, 1230, 1670, 910]]
angle = [[50, 80, 100, 20, 150], [22, 45, 35, 107, 178], [90, 45, 178, 145, 10],
[34, 67, 83, 137, 142], [85, 63, 123, 167, 91]]
i=0
while i<len(lags)-1:
print [b[0] for a in zip(alist, angle) for b in zip(*a) if lags[i]<= b[1] < lags[i+1]]
i+=1
输出:
[200, 220, 100]
[500, 450, 350, 450, 340]
[800, 670, 830, 850, 630]
[1000, 1070, 900, 910]
[1450, 1370, 1420, 1230]
[1500, 1780, 1780, 1670]
[]
答案 2 :(得分:2)
解决方案基于在普通Python中实现它(没有numpy)
您可以将值存储在dict
中,而不是将其存储在单独的变量中(使用collections.defaultdict
是更好的选择。)
您可以创建一个函数来根据角度返回组:
def get_group_from_angle(angle):
group = ''
if angle < 30:
group = 'a'
elif 30 < angle < 60:
group = 'b'
elif 60 < angle < 90:
group = 'c'
return group
然后在for
中使用上述功能创建所需的dict
:
from collections import defaultdict
my_dict = defaultdict(list)
# `alist` and `angle` are variables holding values as mentioned in Question
for ll, aa in zip(list, angle):
for l, a in zip(ll, aa):
my_dict[get_group_from_angle(a)].append(l)
my_dict
保留的最终值为:
{
'a': [200, 220, 100],
'b': [500, 450, 350, 450, 340],
'c': [800, 670, 830, 850, 630],
'': [1000, 1500, 1070, 1780, 900, 1780, 1450, 1370, 1420, 1230, 1670, 910]
# ^ number whose angle is not present in any specified range
}