我试图使用R中的lmerTest包使用SAS中的Satterwaithe近似来重现PROC MIXED过程的输出。
这是我的数据:
Participant Condition Data
1 0 -1,032941629
1 0 0,869267841
1 0 -1,636722191
1 0 -1,15451393
1 0 0,340454836
1 0 -0,399315906
1 1 0,668983169
1 1 1,937817592
1 1 3,110013393
1 1 3,23409718
2 0 0,806881925
2 1 2,71020911
2 1 3,406864275
2 1 1,494288182
2 1 0,741827047
2 1 2,532062685
2 1 3,702118917
2 1 1,825046681
2 1 4,37167021
2 1 1,85125279
3 0 0,288743786
3 0 1,024396121
3 1 2,051281876
3 1 0,24543851
3 1 3,349677964
3 1 1,565395822
3 1 3,077031712
3 1 1,087494708
3 1 1,546150033
3 1 0,440249347
在SAS中使用以下语句:
proc mixed data=mbd;
class participant;
model data = condition / solution ddfm=sat;
random intercept condition / sub=participant;
run;
我得到了这个输出:
我的问题是我似乎无法使用R中的lmerTest重现这些结果。
我认为lmer(Data ~ Condition + (1 | Participant) + (Condition | Participant), REML=TRUE)
与我在SAS中所做的相同,但这给出了不同的结果。请注意,自由度远离SAS输出,因此我认为我估计R中的参数,而不是我在SAS中估算的。我在R中尝试了其他几个语句但是我没有设法获得完全相同的输出。但是这应该是可能的,因为lmerTest包中的lmer()函数也使用Satterwaithe近似,并且应该与SAS PROC MIXED过程完全相同。
有人知道我在R中做错了吗?
非常感谢!
巴特
答案 0 :(得分:4)
您没有指定与SAS示例中相同的随机效果。 (Condition | Participant)
在内部扩展为(1 + Condition | Participant)
,符合随机截距,随机斜率和它们之间的协方差[1]。因此,您的模型中还有两个附加参数(截距方差和协方差)。可以使用lme4语法中的||
指定不相关的随机效果。请注意公式如何在摘要输出中展开。
library(lmerTest)
fit <- lmer(Data ~ Condition + (Condition || Participant), REML=TRUE, data = DF)
summary(fit)
#Linear mixed model fit by REML
#t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
#Formula: Data ~ Condition + ((1 | Participant) + (0 + Condition | Participant))
# Data: DF
#
#REML criterion at convergence: 90.6
#
#Scaled residuals:
# Min 1Q Median 3Q Max
#-1.58383 -0.78970 -0.06993 0.87801 1.91237
#
#Random effects:
# Groups Name Variance Std.Dev.
# Participant (Intercept) 0.00000 0.000
# Participant.1 Condition 0.07292 0.270
# Residual 1.20701 1.099
#Number of obs: 30, groups: Participant, 3
#
#Fixed effects:
# Estimate Std. Error df t value Pr(>|t|)
#(Intercept) -0.09931 0.36621 26.50400 -0.271 0.788363
#Condition 2.23711 0.46655 12.05700 4.795 0.000432 ***
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#Correlation of Fixed Effects:
# (Intr)
#Condition -0.785