我正在尝试使用this链接在tensorflow中实现cnn文本分类。 但是,我没有学习嵌入权重,而是已经提供了预定义的嵌入。 我的输入尺寸为33 * 160。
文字CNN
import tensorflow as tf
import re
class TextCNN(object):
def __init__(self, filter_sizes, num_filters, vec_shape, l2_reg_lambda=0.0, num_classes=2):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.float32, [None, vec_shape[0], vec_shape[1]], name="X_train")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="Y_train")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
l2_loss = tf.constant(0.0)
self.input_x_expanded = tf.expand_dims(self.input_x, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, vec_shape[1], 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
self.weight = W
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.input_x_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
# TODO replace relu with tanh
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, vec_shape[0] - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(3, pooled_outputs)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
代码解释
vec_shape =输入的尺寸,即33 * 160。
训练:
def train_step(x_text_train, y_batch):
feed_dict = {
cnn.input_x: x_text_train,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: CNN.FLAGS.dropout_keep_prob
}
_, step, loss, accuracy, weight, scores = sess.run(
[train_op, global_step, cnn.loss, cnn.accuracy, cnn.weight, cnn.scores],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print(grads_and_vars)
print(scores)
print(weight)
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
batch_iter = CNN.get_batches()
for batch in batch_iter:
X_train , y_train = zip(*batch)
train_step(X_train, y_train)
current_step = tf.train.global_step(sess, global_step)
经过一些训练步骤(大约48)后,变量权重变为nan。
在步骤47,权重变量是
[[[[ 0.10174427 0.03087347 0.04683167 ..., -0.13801393 -0.04721565
-0.15926319]]
[[ 0.0639746 0.03126816 0.18144369 ..., -0.03434205 -0.09856486
-0.00755746]]]]
在步骤48,权重变量是
[[[[ nan nan nan ..., nan nan
nan]]
[[ nan nan nan ..., nan nan
nan]]]]