这是一个变分自动编码器网络,我必须定义一个生成潜在z的采样方法,我认为这可能是错误的。这个py文件正在进行训练,另一个py文件正在进行在线预测,所以我需要保存keras模型,保存模型没有任何问题,但是当我从' h5'文件,它显示错误:
df_test = df[df['label']==cluster_num].iloc[:,:data_num.shape[1]]
data_scale_ = preprocessing.StandardScaler().fit(df_test.values)
data_num_ = data_scale.transform(df_test.values)
models_deep_learning_scaler.append(data_scale_)
batch_size = data_num_.shape[0]//10
original_dim = data_num_.shape[1]
latent_dim = data_num_.shape[1]*2
intermediate_dim = data_num_.shape[1]*10
nb_epoch = 1
epsilon_std = 0.001
x = Input(shape=(original_dim,))
init_drop = Dropout(0.2, input_shape=(original_dim,))(x)
h = Dense(intermediate_dim, activation='relu')(init_drop)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(latent_dim,), mean=0.,
std=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='linear')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
def vae_loss(x, x_decoded_mean):
xent_loss = original_dim * objectives.mae(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return xent_loss + kl_loss
vae = Model(x, x_decoded_mean)
vae.compile(optimizer=Adam(lr=0.01), loss=vae_loss)
train_ratio = 0.95
train_num = int(data_num_.shape[0]*train_ratio)
x_train = data_num_[:train_num,:]
x_test = data_num_[train_num:,:]
vae.fit(x_train, x_train,
shuffle=True,
nb_epoch=nb_epoch,
batch_size=batch_size,
validation_data=(x_test, x_test))
vae.save('./models/deep_learning_'+str(cluster_num)+'.h5')
del vae
from keras.models import load_model
vae = load_model('./models/deep_learning_'+str(cluster_num)+'.h5')
以下是代码:
NameError: name 'latent_dim' is not defined
显示错误:
public final class Algorithm {
public static <T extends Object & Comparable<? super T>>
T max(List<? extends T> list, int begin, int end) {
T maxElem = list.get(begin);
for (++begin; begin < end; ++begin)
if (maxElem.compareTo(list.get(begin)) < 0)
maxElem = list.get(begin);
return maxElem;
}
}
答案 0 :(得分:2)
对于变分损失,您使用的是许多Keras模块未知的变量。您需要通过custom_objects
函数的load_model
参数传递它们。
在你的情况下:
vae.save('./vae_'+str(cluster_num)+'.h5')
vae.summary()
del vae
from keras.models import load_model
vae = load_model('./vae_'+str(cluster_num)+'.h5', custom_objects={'latent_dim': latent_dim, 'epsilon_std': epsilon_std, 'vae_loss': vae_loss})
vae.summary()
答案 1 :(得分:0)
如果在新的py文件中加载模型(.h5)文件,则可以使用load_model('/。h5',compile = False)。 因为您不需要在预测步骤中使用任何自定义对象(即损失函数或latent_dim等)。