我正在尝试使用带有LogisticRegression估算器的sklearn版本0.18.1中的TimeSeriesSplit交叉验证策略。我收到一条错误声明:
cross_val_predict仅适用于分区
以下代码段显示了如何重现:
from sklearn import linear_model, neighbors
from sklearn.model_selection import train_test_split, cross_val_predict, TimeSeriesSplit, KFold, cross_val_score
import pandas as pd
import numpy as np
from datetime import date, datetime
df = pd.DataFrame(data=np.random.randint(0,10,(100,5)), index=pd.date_range(start=date.today(), periods=100), columns='x1 x2 x3 x4 y'.split())
X, y = df['x1 x2 x3 x4'.split()], df['y']
score = cross_val_score(linear_model.LogisticRegression(fit_intercept=True), X, y, cv=TimeSeriesSplit(n_splits=2))
y_hat = cross_val_predict(linear_model.LogisticRegression(fit_intercept=True), X, y, cv=TimeSeriesSplit(n_splits=2), method='predict_proba')
我做错了什么?
答案 0 :(得分:5)
有几种方法可以在tier meaning onset_sgroup
head_face_mu self_focused 0 expert
head_face_mu self_focused 0 expert
head_face_mu context_focused 0 expert
upper_body_mu self_focused 0 expert
upper_body_mu self_focused 0 expert
head_face_mu communication_focused 0 novice
head_face_mu context_focused 0 novice
head_face_mu context_focused 0 novice
upper_body_mu self_focused 0 novice
upper_body_mu self_focused 0 novice
upper_body_mu self_focused 0 novice
head_face_mu self_focused 0.18 novice
lower_body_mu self_focused 0.667 novice
head_face_mu communication_focused 0.69 novice
head_face_mu context_focused 1.139 novice
head_face_mu context_focused 1.301 novice
head_face_mu context_focused 1.32 novice
lower_body_mu self_focused 1.66 novice
head_face_mu context_focused 1.98 novice
lower_body_mu self_focused 2.205 novice
head_face_mu communication_focused 2.297 novice
head_face_mu context_focused 2.349 novice
lower_body_mu self_focused 2.417 novice
upper_body_mu self_focused 2.666 novice
head_face_mu self_focused 2.675 expert
head_face_mu context_focused 3.218 novice
head_face_mu context_focused 3.353 novice
head_face_mu context_focused 3.436 expert
head_face_mu context_focused 3.588 novice
head_face_mu context_focused 3.697 novice
upper_body_mu self_focused 4.006 novice
upper_body_mu context_focused 4.033 novice
upper_body_mu self_focused 4.06 expert
head_face_mu context_focused 4.33 novice
upper_body_mu self_focused 4.332 novice
upper_body_mu self_focused 4.44 novice
head_face_mu context_focused 4.738 novice
lower_body_mu self_focused 5.395 novice
head_face_mu self_focused 5.428 novice
lower_body_mu self_focused 5.926 novice
head_face_mu context_focused 6.283 novice
head_face_mu context_focused 7.002 novice
head_face_mu self_focused 7.031 novice
lower_body_mu self_focused 7.189 novice
upper_body_mu communication_focused 7.45 novice
lower_body_mu self_focused 7.632 expert 1.144
head_face_mu self_focused 7.739 expert 2.159
lower_body_mu self_focused 8.943 novice 9.517
head_face_mu context_focused 9.002 expert 4.608
中传递cv
参数。在这里你必须通过生成器进行拆分。例如
cross_val_score
给出一个发电机。有了这个,您可以生成CV序列和测试索引数组。第一个看起来像这样:
y = range(14)
cv = TimeSeriesSplit(n_splits=2).split(y)
您还可以将数据框作为print cv.next()
(array([0, 1, 2, 3, 4, 5, 6, 7]), array([ 8, 9, 10, 11, 12, 13]))
的输入。
split
在你的情况下,这应该有效:
df = pd.DataFrame(data=np.random.randint(0,10,(100,5)),
index=pd.date_range(start=date.today(),
periods=100), columns='x1 x2 x3 x4 y'.split())
cv = TimeSeriesSplit(n_splits=2).split(df)
print cv.next()
(array([ 0, 1, 2, ..., 31, 32, 33]), array([34, 35, 36, ..., 64, 65, 66]))
有关详细信息,请查看cross_val_score和TimeSeriesSplit。