我有这段代码,
public class TfIdfExample {
public static void main(String[] args){
JavaSparkContext sc = SparkSingleton.getContext();
SparkSession spark = SparkSession.builder()
.config("spark.sql.warehouse.dir", "spark-warehouse")
.getOrCreate();
JavaRDD<List<String>> documents = sc.parallelize(Arrays.asList(
Arrays.asList("this is a sentence".split(" ")),
Arrays.asList("this is another sentence".split(" ")),
Arrays.asList("this is still a sentence".split(" "))), 2);
HashingTF hashingTF = new HashingTF();
documents.cache();
JavaRDD<Vector> featurizedData = hashingTF.transform(documents);
// alternatively, CountVectorizer can also be used to get term frequency vectors
IDF idf = new IDF();
IDFModel idfModel = idf.fit(featurizedData);
featurizedData.cache();
JavaRDD<Vector> tfidfs = idfModel.transform(featurizedData);
System.out.println(tfidfs.collect());
KMeansProcessor kMeansProcessor = new KMeansProcessor();
JavaPairRDD<Vector,Integer> result = kMeansProcessor.Process(tfidfs);
result.collect().forEach(System.out::println);
}
}
我需要获取k-means的向量,但我得到奇数向量
[(1048576,[489554,540177,736740,894973],[0.28768207245178085,0.0,0.0,0.0]),
(1048576,[455491,540177,736740,894973],[0.6931471805599453,0.0,0.0,0.0]),
(1048576,[489554,540177,560488,736740,894973],[0.28768207245178085,0.0,0.6931471805599453,0.0,0.0])]
在k-means工作后我得到它
((1048576,[489554,540177,736740,894973],[0.28768207245178085,0.0,0.0,0.0]),1)
((1048576,[489554,540177,736740,894973],[0.28768207245178085,0.0,0.0,0.0]),0)
((1048576,[489554,540177,736740,894973],[0.28768207245178085,0.0,0.0,0.0]),1)
((1048576,[455491,540177,736740,894973],[0.6931471805599453,0.0,0.0,0.0]),1)
((1048576,[489554,540177,560488,736740,894973],[0.28768207245178085,0.0,0.6931471805599453,0.0,0.0]),1)
((1048576,[455491,540177,736740,894973],[0.6931471805599453,0.0,0.0,0.0]),0)
((1048576,[455491,540177,736740,894973],[0.6931471805599453,0.0,0.0,0.0]),1)
((1048576,[489554,540177,560488,736740,894973],[0.28768207245178085,0.0,0.6931471805599453,0.0,0.0]),0)
((1048576,[489554,540177,560488,736740,894973],[0.28768207245178085,0.0,0.6931471805599453,0.0,0.0]),1)
但我认为它的工作不正确,因为tf-idf必须有另一个视图。
我认为mllib
已经准备好了这方法,但我测试了文档示例,但没有得到我需要的东西。 Spark的自定义解决方案我还没有找到。可能有人与它合作并给我回答我做错了什么?可能是我没有正确使用mllib功能?
答案 0 :(得分:2)
在TF-IDF为SparseVector之后你得到了什么。
为了更好地理解这些值,让我从TF向量开始:
(1048576,[489554,540177,736740,894973],[1.0,1.0,1.0,1.0])
(1048576,[455491,540177,736740,894973],[1.0,1.0,1.0,1.0])
(1048576,[489554,540177,560488,736740,894973],[1.0,1.0,1.0,1.0,1.0])
例如,对应于第一个句子的TF向量是1048576
(= 2^20
)分量向量,其中4个非零值对应于489554,540177,736740
和{{1}的索引},所有其他值都为零,因此不存储在稀疏矢量表示中。
特征向量的维数等于您散列到的桶的数量:894973
桶。
对于这种大小的语料库,您应该考虑减少桶的数量:
1048576 = 2^20
建议2的幂以最小化散列冲突的数量。
接下来,您应用IDF权重:
HashingTF hashingTF = new HashingTF(32);
如果我们再次查看第一个句子,我们得到3个零 - 这是预期的,因为术语“this”,“is”和“句子”出现在语料库的每个文档中,所以by definition of IDF将等于零。
为什么零值仍在(稀疏)向量中?因为在当前实现中,the size of the vector is kept the same并且只有值乘以IDF。