我正在尝试使用R插入包来执行线性回归模型的5倍交叉验证。我是机器学习的新手,但我希望每次“重复”时,新的斜率和截距都适合“训练”数据集。但是,默认情况下,斜率和截距对于所有重复都保持不变,并且测试似乎是在每次重复时推出新的RMSE和Rsquared。有没有办法允许调整拦截?
这是我的代码:
regressControl <- trainControl(method="repeatedcv",
number = 5,
repeats = 5)
regress <- train(y ~ x,
data = myData,
method = "lm",
trControl = regressControl)
regress
输出如下:
Linear Regression
54 samples
1 predictor
No pre-processing
Resampling: Cross-Validated (5 fold, repeated 5 times)
Summary of sample sizes: 45, 44, 42, 42, 43, 43, ...
Resampling results:
RMSE Rsquared
0.01162334 0.9614908
Tuning parameter 'intercept' was held constant at a value of TRUE
regress$finalModel
Call:
lm(formula = .outcome ~ ., data = dat)
Coefficients:
(Intercept) x
-0.03054 0.01690