我在尝试将一个spark kinesis流媒体应用程序运行到Amazon EMR集群(1名主人,3名工作人员)时遇到了一些麻烦。
我想要实现的是使用sbt程序集插件构建FAT jar,以便在主节点上运行spark-submit命令。我正在使用的命令如下:
spark-submit --class MyClass --master yarn --deploy-mode cluster --executor-memory 1g --executor-cores 2 HDFS:// URL:端口/ my.jar
此应用程序从kinesis流接收传入数据并基于它,执行请求(回发后)到我可以跟踪的URL。我在本地测试了我的应用程序,运行它将SparkConfig上的Master设置为本地[核心]。
此外,这是我的代码和我的构建sbt。我的项目使用的是scala 2.11.8和sbt 0.13.8
build.sbt
name := "my-app"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-streaming_2.11" % "2.0.0" % "provided",
"org.apache.spark" % "spark-streaming-kinesis-asl-assembly_2.11" % "2.0.0",
"org.scalaj" % "scalaj-http_2.11" % "2.3.0"
)
assemblyMergeStrategy in assembly := {
case PathList("org", "apache", xs @ _*) => MergeStrategy.last
case x =>
val oldStrategy = (assemblyMergeStrategy in assembly).value
oldStrategy(x)
}
MyClass的
import com.amazonaws.auth.BasicAWSCredentials
import com.amazonaws.internal.StaticCredentialsProvider
import com.amazonaws.regions.RegionUtils
import com.amazonaws.services.kinesis.AmazonKinesisClient
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPositionInStream
import com.keynetic_digital.model.RawKDLog
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kinesis.KinesisUtils
import org.apache.spark.streaming.{Duration, Milliseconds, StreamingContext}
import utils.HttpRequest
/**
* Created by franco on 18/01/17.
*/
object MyClass {
val awsAccessKeyId : String = "xxxxxxxxx"
val awsSecretKey : String = "xxxxxxxx"
val kinesisStreamName : String = "xxxxxxxx"
val kinesisEndpoint : String = "https://kinesis.us-west-2.amazonaws.com"
val appName : String = "xxxxxxxxx"
def main(args: Array[String]): Unit = {
//Set up Amazon Kinesis Client
val kinesisClient : AmazonKinesisClient = createKinesisClient
//Get all Kinesis shards
val shards = kinesisClient.describeStream(kinesisStreamName).getStreamDescription.getShards.size()
val batchInterval = Milliseconds(5000)
// Create Spark Streaming Context
val ssc : StreamingContext = createContext(batchInterval)
val regionName = RegionUtils.getRegionByEndpoint(kinesisEndpoint).getName
// Create the Kinesis DStreams
val kinesisStreams = (0 until shards).map { i =>
KinesisUtils.createStream(ssc, appName,
kinesisStreamName,kinesisEndpoint,
regionName,InitialPositionInStream.LATEST, batchInterval * 2,
StorageLevel.MEMORY_AND_DISK_2)
}
//Unified all Streams
val stream = ssc.union(kinesisStreams)
//Get an RDD of Option(KDLog) items
val jsons = stream.map(bytes => Option(RawKDLog.fromJson(bytes))).filter(_.isDefined)
jsons.foreachRDD{rdd =>
rdd.foreach{log =>
handleLog(log)
}
}
// Start the streaming context and await termination
ssc.start()
ssc.awaitTermination()
}
def createKinesisClient : AmazonKinesisClient = {
//Set System Properties for Worker
System.setProperty("aws.accessKeyId", awsAccessKeyId)
System.setProperty("aws.secretKey", awsSecretKey)
//Setting AWS Credentials
val credentials : BasicAWSCredentials = new BasicAWSCredentials(awsAccessKeyId,awsSecretKey)
//Setting AWS Credential Provider
val provider : StaticCredentialsProvider = new StaticCredentialsProvider(credentials)
//Setting Kinesis Client
val kinesisClient : AmazonKinesisClient = new AmazonKinesisClient(provider)
kinesisClient.setEndpoint(kinesisEndpoint)
kinesisClient
}
def createContext(batchInterval : Duration) : StreamingContext = {
// Create Spark Configuration
val config = new SparkConf().setAppName(appName)
// Create Spark Streaming Context
new StreamingContext(config, batchInterval)
}
def handleLog(log : Option[RawKDLog]) : Unit = {
if(log.isDefined){
postBack(log.get)
}
}
/**
* Method that handles url postback requests
*/
private def postBack(log : RawKDLog) = {
//TODO url queryString replacement & request masking
val postBackUrl : String = "url where I can track requests by tailing Nginx log"
HttpRequest(postBackUrl) .asString
}
}
在群集主节点中提交应用程序后,会发生以下错误。
17/01/18 14:39:26 INFO Client:
client token: N/A
diagnostics: User class threw exception: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 74, ip-172-31-42-151.us-west-2.compute.internal): java.lang.NoSuchMethodError: org.apache.spark.storage.BlockManager.get(Lorg/apache/spark/storage/BlockId;)Lscala/Option;
at org.apache.spark.streaming.kinesis.KinesisBackedBlockRDD.getBlockFromBlockManager$1(KinesisBackedBlockRDD.scala:104)
at org.apache.spark.streaming.kinesis.KinesisBackedBlockRDD.compute(KinesisBackedBlockRDD.scala:117)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
ApplicationMaster host: 175.31.43.46
ApplicationMaster RPC port: 0
queue: default
start time: 1484750075922
final status: FAILED
tracking URL: http://ip-175-31-46-219.us-west-2.compute.internal:20888/proxy/application_1484568737877_0012/
user: hadoop
Exception in thread "main" org.apache.spark.SparkException: Application application_1484568737877_0012 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1132)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1178)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/01/18 14:39:26 INFO ShutdownHookManager: Shutdown hook called
我非常感谢有关此主题的任何指导,因为我对开发和使用spark应用程序非常陌生。
答案 0 :(得分:0)
此问题的解决方案已在此问题Spark Streaming - Error when reading from Kinesis
中说明实际上发生的事情是我用amazon emr 5.2.1设置了我的集群,它使用Spark 2.0.2并且我捆绑了我的FAT jar以使用 spark-streaming-kinesis-asl-assembly_2.11 2.0.0。
因此我的应用程序无法读取Kinesis的输入数据
我切换到emr 5.0.0,这是使用Spark 2.0.0的最新版本,所有内容都按预期执行