我正在使用Tensorflow serve_basic示例:
https://tensorflow.github.io/serving/serving_basic
以下:https://tensorflow.github.io/serving/setup#prerequisites
在基于ubuntu:latest的docker容器中,我安装了:
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key
sudo apt-get update && sudo apt-get install bazel
sudo apt-get upgrade bazel
pip install grpcio
sudo apt-get update && sudo apt-get install -y build-essential curl libcurl3-dev git libfreetype6-dev libpng12-dev libzmq3-dev pkg-config python-dev python-numpy python-pip software-properties-common swig zip zlib1g-dev
git clone --recurse-submodules https://github.com/tensorflow/serving
cd serving
cd tensorflow
./configure
cd ..
我用bazel构建了源代码并且所有测试都成功运行了:
bazel build tensorflow_serving/...
bazel test tensorflow_serving/...
我可以使用以下命令成功导出mnist模型:
bazel-bin/tensorflow_serving/example/mnist_export /tmp/mnist_model
我可以用以下方式为导出的模型提供服务:
bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000 --model_name=mnist --model_base_path=/tmp/mnist_model/
当我测试服务器并尝试使用以下命令将客户端连接到模型服务器时
bazel-bin/tensorflow_serving/example/mnist_client --num_tests=1000 --server=localhost:9000
我看到了这个输出:
root@dc3ea7993fa9:~/serving# bazel-bin/tensorflow_serving/example/mnist_client --num_tests=2 --server=localhost:9000
Extracting /tmp/train-images-idx3-ubyte.gz
Extracting /tmp/train-labels-idx1-ubyte.gz
Extracting /tmp/t10k-images-idx3-ubyte.gz
Extracting /tmp/t10k-labels-idx1-ubyte.gz
AbortionError(code=StatusCode.NOT_FOUND, details="FeedInputs: unable to find feed output images")
AbortionError(code=StatusCode.NOT_FOUND, details="FeedInputs: unable to find feed output images")
Inference error rate is: 100.0%
答案 0 :(得分:1)
“--use_saved_model”模型标志设置为默认值“true”;启动服务器时使用--use_saved_model = false。这应该有效:
<input type="checkbox" [checked]="object.completed" (change)="object.completed = !objected.completed" >
答案 1 :(得分:0)
我在tensorflow github上提到了这一点,解决方法是删除已创建的原始模型。如果您遇到此问题,请运行
rm -rf /tmp/mnist_model
并重建它