基于apache Kafka docs KStream-to-KStream Joins are always windowed joins
,我的问题是如何控制窗口的大小?保持主题数据的大小是否相同?或者,例如,我们可以将数据保留1个月,但过去几周加入流?
是否有任何好的示例来显示窗口化的KStream-to-kStream窗口连接?
在我的情况下,我们说我有2个KStream,kstream1
和kstream2
我希望能够加入kstream1
到期30天{{1}的10天}}
答案 0 :(得分:12)
这绝对是可能的。定义Stream运算符时,可以明确指定连接窗口大小。
KStream stream1 = ...;
KStream stream2 = ...;
long joinWindowSizeMs = 5L * 60L * 1000L; // 5 minutes
long windowRetentionTimeMs = 30L * 24L * 60L * 60L * 1000L; // 30 days
stream1.leftJoin(stream2,
... // add ValueJoiner
JoinWindows.of(joinWindowSizeMs)
);
// or if you want to use retention time
stream1.leftJoin(stream2,
... // add ValueJoiner
(JoinWindows)JoinWindows.of(joinWindowSizeMs)
.until(windowRetentionTimeMs)
);
有关详细信息,请参阅http://docs.confluent.io/current/streams/developer-guide.html#joining-streams。
滑动窗口基本上定义了一个额外的连接谓词。在类似SQL的语法中,这将是:
SELECT * FROM stream1, stream2
WHERE
stream1.key = stream2.key
AND
stream1.ts - before <= stream2.ts
AND
stream2.ts <= stream1.ts + after
此示例中的before == after == joinWindowSizeMs
。如果您使用before
和after
明确设置这些值,则JoinWindows#before()
和JoinWindows#after()
也可以有不同的值。
源主题的保留时间完全独立于应用于Kafka Streams自身创建的更改日志主题的指定windowRetentionTimeMs
。窗口保留允许相互之间加入无序记录,即延迟到达的记录(请记住,Kafka具有偏移基于订购保证,但关于时间戳,记录可能无序)。
答案 1 :(得分:4)
除了Matthias J. Sax所说的,还有一个流到流(窗口)的连接示例: https://github.com/confluentinc/examples/blob/3.1.x/kafka-streams/src/test/java/io/confluent/examples/streams/StreamToStreamJoinIntegrationTest.java
这适用于使用Apache Kafka 0.10.1的Confluent 3.1.x,即截至2017年1月的最新版本。有关使用较新版本的代码示例,请参阅上面存储库中的master
分支。
这是上面代码示例的关键部分(同样,对于Kafka 0.10.1),稍微适应了您的问题。请注意,此示例恰好演示了OUTER JOIN。
long joinWindowSizeMs = TimeUnit.MINUTES.toMillis(5);
long windowRetentionTimeMs = TimeUnit.DAYS.toMillis(30);
final Serde<String> stringSerde = Serdes.String();
KStreamBuilder builder = new KStreamBuilder();
KStream<String, String> alerts = builder.stream(stringSerde, stringSerde, "adImpressionsTopic");
KStream<String, String> incidents = builder.stream(stringSerde, stringSerde, "adClicksTopic");
KStream<String, String> impressionsAndClicks = alerts.outerJoin(incidents,
(impressionValue, clickValue) -> impressionValue + "/" + clickValue,
// KStream-KStream joins are always windowed joins, hence we must provide a join window.
JoinWindows.of(joinWindowSizeMs).until(windowRetentionTimeMs),
stringSerde, stringSerde, stringSerde);
// Write the results to the output topic.
impressionsAndClicks.to(stringSerde, stringSerde, "outputTopic");