生成无法识别的图像来欺骗vggnet

时间:2017-01-17 15:18:04

标签: tensorflow gradient

我正在尝试生成一个无法识别的图像,可以欺骗Vggnet。我使用以下vgg模型进行张量流。我为计算渐变添加了一些修改。在结尾部分,你可以看到我对计算相对于给定图像的渐变的修改(它是否正确?我正在尝试生成vggnet在第1类中赋予高概率的图像)。使用此渐变,我更新随机图像以欺骗vggnet。但这并不是那么成功。我不能高概率地生成图像。我得到的最大概率大约是0.001。我怎样才能让它不断增加?

enter image description here

Vggnet模型

# Davi Frossard, 2016                                                                  #
# VGG16 implementation in TensorFlow                                                   #
# Details:                                                                             #
# http://www.cs.toronto.edu/~frossard/post/vgg16/                                      #
#                                                                                      #
# Model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md     #
# Weights from Caffe converted using https://github.com/ethereon/caffe-tensorflow      #########################################################################################

import tensorflow as tf
import numpy as np
from scipy.misc import imread, imresize
from imagenet_classes import class_names


class vgg16:
    def __init__(self, imgs, weights=None, sess=None):
        self.imgs = imgs
        self.convlayers()
        self.fc_layers()
        self.probs = tf.nn.softmax(self.fc3l, name= 'prob')
        if weights is not None and sess is not None:
            self.load_weights(weights, sess)

    def convlayers(self):
        self.parameters = []

        # zero-mean input
        with tf.name_scope('preprocess') as scope:
            mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
            images = self.imgs-mean

        # conv1_1
        with tf.name_scope('conv1_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv1_2
        with tf.name_scope('conv1_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv1_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool1
        self.pool1 = tf.nn.max_pool(self.conv1_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool1')

        # conv2_1
        with tf.name_scope('conv2_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv2_2
        with tf.name_scope('conv2_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv2_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool2
        self.pool2 = tf.nn.max_pool(self.conv2_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool2')

        # conv3_1
        with tf.name_scope('conv3_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_2
        with tf.name_scope('conv3_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv3_3
        with tf.name_scope('conv3_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv3_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool3
        self.pool3 = tf.nn.max_pool(self.conv3_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool3')

        # conv4_1
        with tf.name_scope('conv4_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_2
        with tf.name_scope('conv4_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv4_3
        with tf.name_scope('conv4_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv4_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool4
        self.pool4 = tf.nn.max_pool(self.conv4_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool4')

        # conv5_1
        with tf.name_scope('conv5_1') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_1 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_2
        with tf.name_scope('conv5_2') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_2 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # conv5_3
        with tf.name_scope('conv5_3') as scope:
            kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32,
                                                     stddev=1e-1), name='weights')
            conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME')
            biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32),
                                 trainable=True, name='biases')
            out = tf.nn.bias_add(conv, biases)
            self.conv5_3 = tf.nn.relu(out, name=scope)
            self.parameters += [kernel, biases]

        # pool5
        self.pool5 = tf.nn.max_pool(self.conv5_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME',
                               name='pool4')

    def fc_layers(self):
        # fc1
        with tf.name_scope('fc1') as scope:
            shape = int(np.prod(self.pool5.get_shape()[1:]))
            fc1w = tf.Variable(tf.truncated_normal([shape, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            pool5_flat = tf.reshape(self.pool5, [-1, shape])
            fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b)
            self.fc1 = tf.nn.relu(fc1l)
            self.parameters += [fc1w, fc1b]

        # fc2
        with tf.name_scope('fc2') as scope:
            fc2w = tf.Variable(tf.truncated_normal([4096, 4096],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
                                 trainable=True, name='biases')
            fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b)
            self.fc2 = tf.nn.relu(fc2l)
            self.parameters += [fc2w, fc2b]

        # fc3
        with tf.name_scope('fc3') as scope:
            fc3w = tf.Variable(tf.truncated_normal([4096, 1000],
                                                         dtype=tf.float32,
                                                         stddev=1e-1), name='weights')
            fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32),
                                 trainable=True, name='biases')
            self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b)
            self.parameters += [fc3w, fc3b]

        ###################### Modified part######################
        with tf.name_scope('grad') as scope:
            temp =  np.zeros(1000)
            temp[0] = 1
            vec = tf.constant(temp, dtype='float32', name = 'goal')
            loss = tf.reduce_mean(tf.square(tf.sub(tf.nn.softmax(self.fc3l), vec)))
            self.grad = tf.gradients(loss, self.imgs)[-1]
    ##############################################################
    def load_weights(self, weight_file, sess):
        weights = np.load(weight_file)
        keys = sorted(weights.keys())
        for i, k in enumerate(keys):
            print i, k, np.shape(weights[k])
            sess.run(self.parameters[i].assign(weights[k]))

创建会话

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

sess = tf.Session()
imgs = tf.placeholder(tf.float32, [None, 224, 224, 3])
vgg = vgg16(imgs, 'vgg16_weights.npz', sess)

为愚弄生成新图片

imarray = np.random.rand(224,224,3) * 255
imarray = imarray.astype('float32')
feed_dict = {vgg.imgs: [imarray]}

prob_list = []
prob_list.append(sess.run(vgg.probs, feed_dict={vgg.imgs: [imarray]})[0][0])


lamda = 0.1
#mean = np.array([123.68, 116.779, 103.939])
print 'start'
for i in range(1000):
    rst = sess.run(vgg.grad, feed_dict)
    imarray -= lamda * (rst[0]*255)
    feed_dict = {vgg.imgs: [imarray]}
    prob_list.append(sess.run(vgg.probs, feed_dict={vgg.imgs: [imarray]})[0][0])

1 个答案:

答案 0 :(得分:0)

我很惊讶渐变和图像的形状相匹配。 你是根据参数得出损失的导数,应该是关于图像占位符。对不起,如果我遗漏了一些明显的东西,我现在就无法运行代码。

损失的计算基于fc3l,最终输出为probs。我不知道在VGG代码中计算probs的位置。也许两者之间有层次。您可以绘制fc3l的第一个组件,看看是否会上升。

您应该将损失基于probs