有人能为我提供一个使用插入符号rfe
函数与glm或glmnet模型的详细示例吗?我试过这样的事情:
rfe_records <- Example_data_frame
rfe_ctrl <- rfeControl(functions = caretFuncs, method = "repeatedcv", repeats = 5, verbose = TRUE, classProbs = TRUE, summaryFunction = twoClassSummary)
number_predictors <- dim(rfe_records)[2]-1
x <- dplyr::select(rfe_records, -outcomeVariable)
y <- as.numeric(rfe_records$outcomeVariable)
glmProfile <- rfe(x, y, rfeControl = rfe_ctrl, sizes = c(1:number_predictors), method="glmnet", preProc = c("center", "scale"), metric = "Accuracy")
print(glmProfile)
但我得到的结果并不是我所需要的。我将Accuracy指定为度量标准,但我得到了:
Recursive feature selection
Outer resampling method: Cross-Validated (10 fold, repeated 5 times)
Resampling performance over subset size:
Variables RMSE Rsquared RMSESD RsquaredSD Selected
1 0.5047 0.10830 0.04056 0.11869 *
2 0.5058 0.09386 0.04728 0.11332
3 0.5117 0.08565 0.04999 0.10211
4 0.5139 0.07490 0.05042 0.10048
5 0.5166 0.07678 0.05456 0.09966
6 0.5202 0.08203 0.06174 0.10822
7 0.5187 0.08471 0.06207 0.10893
8 0.5168 0.07850 0.05939 0.09697
9 0.5175 0.08228 0.05966 0.10068
10 0.5176 0.08180 0.05980 0.10042
11 0.5179 0.08015 0.05950 0.09905
The top 1 variables (out of 1):
varName
答案 0 :(得分:1)
根据this page caret
使用结果变量的类,当它确定是否使用回归或分类时,可以使用glmnet
这样的函数。根据您的代码,您使用as.numeric()
将结果变量指定为数字,因此glmnet选择进行回归,而不是按照您的意图进行分类。将结果变量指定为两级因子,以获得分类。