我已经使用Pandas plot
功能组合了plot
,但我们非常感谢帮助完成以下元素(如所需的输出图像所示):
OpenToLast
条形数据更加突出,如果可能的话,是否希望将其他堆叠的条形淡入背景?数据:
请参阅DataFrame.to_dict()
输出here。
这就是我获取现有plot
的方式:
auction[['OpenToLast','OpenToMaxHigh','OpenToMaxLow']].head(20).plot(kind='barh',
figsize=(7,10),
fontsize=10,
colormap ='winter',
stacked = True,
legend = True)
当前情节:
期望输出:
答案 0 :(得分:2)
尝试以下方法:
事实证明最棘手的部分是着色,但绘制线条并更新刻度线相对简单(参见代码末尾)
import numpy as np
# get the RGBA values from your chosen colormap ('winter')
winter = matplotlib.cm.winter
winter = winter(range(winter.N))
# select N elements from winter depending on the number of columns in your
# dataframe (make sure they are spaced evenly from the colormap so they are as
# distinct as possible)
winter = winter[np.linspace(0,len(winter)-1,auction.shape[1],dtype=int)]
# set the alpha value for the two rightmost columns
winter[1:,3] = 0.2 # 0.2 is a suggestion but feel free to play around with this value
new_winter = matplotlib.colors.ListedColormap(winter) # convert array back to a colormap
# plot with the new colormap
the_plot = auction[['OpenToLast','OpenToMaxHigh','OpenToMaxLow']].head(20).plot(kind='barh',
figsize=(7,10),
fontsize=10,
colormap = new_winter,
stacked = True,
legend = True)
the_plot.axvline(0,0,1) # vertical line at 0 on the x axis
start,end = the_plot.get_xlim() # find current span of the x axis
the_plot.xaxis.set_ticks(np.arange(start,end,10)) # reset the ticks on the x axis with increments of 10
答案 1 :(得分:0)
我没有意识到我可以直接使用Matplotlib API使用Pandas plot
命令。我现在已经复制了上面的代码并进行了修改,以便在Matplotlib中添加其他元素。
如果有人知道怎么做,那么在条形图上添加渐变会很好,但我会将这个问题标记为已回答:
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
cols = ['OpenToLast','OpenToMaxHigh','OpenToMaxLow']
colors = {'OpenToLast':'b', 'OpenToMaxHigh' : '#b885ea', 'OpenToMaxLow': '#8587ea'}
axnum = auction[cols].head(20).plot(kind='barh',
figsize=(7,10),
fontsize=10,
color=[colors[i] for i in cols],
stacked = True,
legend = True)
axnum.xaxis.set_major_locator(ticker.MultipleLocator(10))
plt.axvline(0, color='b')