我正在
init ()为参数' n_splits'
获取了多个值
此行的错误:
cv = ShuffleSplit(n_splits = 10,test_size = 0.2,random_state = 0)
在以下代码中:
import matplotlib.pyplot as pl
import numpy as np
import sklearn.model_selection as curves
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import ShuffleSplit, train_test_split, learning_curve
def ModelLearning(X, y):
""" Calculates the performance of several models with varying sizes of training data.
The learning and testing scores for each model are then plotted. """
# Create 10 cross-validation sets for training and testing
cv = ShuffleSplit(n_splits = 10, test_size = 0.2, random_state = 0)
# Generate the training set sizes increasing by 50
train_sizes = np.rint(np.linspace(1, X.shape[0]*0.8 - 1, 9)).astype(int)
# Create the figure window
fig = pl.figure(figsize=(10,7))
# Create three different models based on max_depth
for k, depth in enumerate([1,3,6,10]):
# Create a Decision tree regressor at max_depth = depth
regressor = DecisionTreeRegressor(max_depth = depth)
# Calculate the training and testing scores
sizes, train_scores, test_scores = learning_curve(regressor, X, y, \
train_sizes = train_sizes, cv = cv, scoring = 'r2')
# Find the mean and standard deviation for smoothing
train_std = np.std(train_scores, axis = 1)
train_mean = np.mean(train_scores, axis = 1)
test_std = np.std(test_scores, axis = 1)
test_mean = np.mean(test_scores, axis = 1)
# Subplot the learning curve
ax = fig.add_subplot(2, 2, k+1)
ax.plot(sizes, train_mean, 'o-', color = 'r', label = 'Training Score')
ax.plot(sizes, test_mean, 'o-', color = 'g', label = 'Testing Score')
ax.fill_between(sizes, train_mean - train_std, \
train_mean + train_std, alpha = 0.15, color = 'r')
ax.fill_between(sizes, test_mean - test_std, \
test_mean + test_std, alpha = 0.15, color = 'g')
# Labels
ax.set_title('max_depth = %s'%(depth))
ax.set_xlabel('Number of Training Points')
ax.set_ylabel('Score')
ax.set_xlim([0, X.shape[0]*0.8])
ax.set_ylim([-0.05, 1.05])
# Visual aesthetics
ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad = 0.)
fig.suptitle('Decision Tree Regressor Learning Performances', fontsize = 16, y = 1.03)
fig.tight_layout()
fig.show()
我知道这个错误通常表示参数顺序不正确,但这应该是正确的。这是sklearn文档中的示例:
rs = ShuffleSplit(n_splits = 3,test_size = .25,random_state = 0)
我还尝试删除n_splits参数,因为10是默认值:
cv = ShuffleSplit(test_size = 0.2,random_state = 0)
这会产生相同的错误。
我将代码从python 2.7转换为3.5,从早期版本的sklearn转换为0.18.1,所以我可能错过了一些东西,但我不知道它可能是什么。调用ShuffleSplit的行中的参数似乎也是顺序的:
尺寸,train_scores,test_scores = learning_curve(回归量,X,y,\ train_sizes = train_sizes,cv = cv,得分=' r2')
调用函数的X和y与python 2.7一起工作,所以它们也应该没问题。
回溯:
TypeError Traceback (most recent call last)
<ipython-input-33-191abc15bbd7> in <module>()
1 # Produce learning curves for varying training set sizes and maximum depths
----> 2 vs.ModelLearning(features, prices)
E:\Python\machine-learning-master\projects\boston_housing\visuals.py in ModelLearning(X, y)
21
22 # Create 10 cross-validation sets for training and testing
---> 23 cv = ShuffleSplit(n_splits = 10, test_size = 0.2, random_state = 0)
24
25 # Generate the training set sizes increasing by 50
TypeError: __init__() got multiple values for argument 'n_splits'
答案 0 :(得分:0)
而不是:
from sklearn.model_selection import ShuffleSplit
使用:
from sklearn.cross_validation import ShuffleSplit
您可以为StratifiedShuffleSplit
获得相同的错误,再次使用
cross_validation
不是model_selection
。