public class RDDExample {
public static void main(String[] args){
final JavaSparkContext sc = SparkSingleton.getContext();
Lemmatizer lemmatizer = new Lemmatizer();
List<String> dirtyTwits = Arrays.asList(
"Shipment of gold arrived in a truck",
"Delivery of silver arrived in a silver truck",
"Shipment of gold damaged in a fire"
//итд, дофантазируйте дальше сами :)
);
JavaRDD<String> twitsRDD = sc.parallelize(dirtyTwits);
JavaRDD<List<String>> lemmatizedTwits = twitsRDD.map(new Function<String, List<String>>() {
@Override
public List<String> call(String s) throws Exception {
return lemmatizer.Execute(s);//return List<String>
}
});
System.out.println(lemmatizedTwits.collect());
}
}
我编写代码,但在运行时我在线程“main”中有异常异常org.apache.spark.SparkException:任务不可序列化。 我在谷歌搜索它,但需要我找不到Java的解决方案。 Scala的所有代码或简单的操作“返回s +”qwer“”。 在哪里我可以阅读如何使用.map中其他类的方法?或者可能是谁告诉我它是如何工作的?对不起我的英语不好。 完全追溯
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1435)
at org.apache.spark.rdd.RDD.map(RDD.scala:271)
at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78)
at org.apache.spark.api.java.JavaRDD.map(JavaRDD.scala:32)
at RDDExample.main(RDDExample.java:26)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
Caused by: java.io.NotSerializableException: preprocessor.coreNlp.Lemmatizer
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164)
... 11 more
完整日志
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/01/15 00:45:49 INFO SecurityManager: Changing view acls to: ntsfk
17/01/15 00:45:49 INFO SecurityManager: Changing modify acls to: ntsfk
17/01/15 00:45:49 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(ntsfk); users with modify permissions: Set(ntsfk)
17/01/15 00:45:50 INFO Slf4jLogger: Slf4jLogger started
17/01/15 00:45:50 INFO Remoting: Starting remoting
17/01/15 00:45:51 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@localhost:64122]
17/01/15 00:45:51 INFO Utils: Successfully started service 'sparkDriver' on port 64122.
17/01/15 00:45:51 INFO SparkEnv: Registering MapOutputTracker
17/01/15 00:45:51 INFO SparkEnv: Registering BlockManagerMaster
17/01/15 00:45:51 INFO DiskBlockManager: Created local directory at F:\Local\Temp\spark-local-20170115004551-eaac
17/01/15 00:45:51 INFO MemoryStore: MemoryStore started with capacity 491.7 MB
17/01/15 00:45:52 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/01/15 00:45:53 INFO HttpFileServer: HTTP File server directory is F:\Local\Temp\spark-e041cd0f-83b9-46fa-b5d0-4fce800a2778
17/01/15 00:45:53 INFO HttpServer: Starting HTTP Server
17/01/15 00:45:53 INFO Utils: Successfully started service 'HTTP file server' on port 64123.
17/01/15 00:45:53 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/01/15 00:45:53 INFO SparkUI: Started SparkUI at http://DESKTOP-B29B6NA:4040
17/01/15 00:45:54 INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@localhost:64122/user/HeartbeatReceiver
17/01/15 00:45:55 INFO NettyBlockTransferService: Server created on 64134
17/01/15 00:45:55 INFO BlockManagerMaster: Trying to register BlockManager
17/01/15 00:45:55 INFO BlockManagerMasterActor: Registering block manager localhost:64134 with 491.7 MB RAM, BlockManagerId(<driver>, localhost, 64134)
17/01/15 00:45:55 INFO BlockManagerMaster: Registered BlockManager
17/01/15 00:45:55 INFO StanfordCoreNLP: Adding annotator tokenize
17/01/15 00:45:55 INFO TokenizerAnnotator: TokenizerAnnotator: No tokenizer type provided. Defaulting to PTBTokenizer.
17/01/15 00:45:55 INFO StanfordCoreNLP: Adding annotator ssplit
17/01/15 00:45:55 INFO StanfordCoreNLP: Adding annotator pos
Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger ... done [3,5 sec].
17/01/15 00:45:59 INFO StanfordCoreNLP: Adding annotator lemma
我有异常。
Enviroment Java 1.8,Spark 2.10
答案 0 :(得分:3)
通常,首选方法是制作Lemmatizer
Serializable
,但您必须记住序列化不是此处唯一可能出现的问题。 Spark执行器在很大程度上依赖于多线程,闭包中的任何对象都应该是线程安全的。
如果满足这两个条件(可序列化和线程安全性),另一种解决方案是为每个执行程序线程创建单独的实例,例如使用mapPartitions
。一个天真的解决方案(通常最好避免收集整个分区)可以如下绘制:
twitsRDD.mapPartitions(iter -> {
Lemmatizer lemmatizer = new Lemmatizer();
List<List<String>> lemmas = new LinkedList<>();
while (iter.hasNext()) {
lemmas.add(lemmatizer.Execute(iter.next()));
}
return lemmas.iterator();
});
这应解决序列化问题并解决一些(但不是全部)线程安全问题。由于CoreNLP的最新版本声称是线程安全的,因此在您的情况下它应该足够好。