模拟多级logit模型的数据

时间:2017-01-14 16:27:41

标签: r

我正在尝试模拟用于测试多级贝叶斯逻辑回归模型的多级数据(随机拦截)。这是我到目前为止所做的:

n.country <- 42 #number of units
obs <- rbinom(n.country, 10, .8) #number of obs. per unit
n.obs <- sum(obs) #overall number of obs
country <- rep(1:n.country, obs)

e.country <- rnorm(n.country,0, 3) #country-specific error
e.obs <- rnorm(n.obs, 0, 5) #observation-specific error

# Continuous independent variables
set.seed(666)
X1 = rnorm(n.obs)            
X2 = rnorm(n.obs)
X3 = rnorm(n.obs)          
X4 = rnorm(n.obs)
X5 = rnorm(n.obs)          
X6 = rnorm(n.obs)
X7 = rnorm(n.obs)          
X8 = rnorm(n.obs)

#Dependent variable 
L <- 2*X1 + 3*X2 + 1.75*X3 + 2.5*X4 + 1.5*X5 + 
       3.5*X6 + 0.5*X7 + 1.75*X8 + e.country[country] + e.obs 
##  prob. of the dependent variable described by a linear 
##   combination of covariates and country-specific intercepts 
pr = 1/(1+exp(-L))# pass through an inv-logit function
Y = rbinom(n.obs,1,pr)  #DV described by its probability

#Set up data frame
Test = data.frame(y=Y,x1=X1,x2=X2,x3=X3,x4=X4,x5=X5,x6=X6,
                  x7=X7,x8=X8,country=country)

但是,在将估算器应用于它时,它产生的系数与我设置的系数不同,glmer()包的lme4函数也是如此。 我对随机和固定效果都很感兴趣。我的贝叶斯估计器看起来像这样:

writeLines("
model{
  for (i in 1:N){
y[i] ~ dbin(p.bound[i], 1)
p.bound[i] <- max(0, min(1, p[i]))
logit(p[i]) <- Xbeta[i]  #likelihood
    Xbeta[i] <- v[country[i]] + beta[1]*x1[i] + beta[2]*x2[i] + beta[3]*x3[i] + beta[4]*x4[i] + beta[5]*x5[i] + beta[6]*x6[i] + beta[7]*x7[i] + beta[8]*x8[i]
  } #linear combination
  for (j in 1:n){
    v[j] ~ dnorm(beta0, prec.tau2) #country-specific intercept
  }
  beta[1] ~ dmnorm(0,0.001) #IV priors
  beta[2] ~ dmnorm(0,0.001)
  beta[3] ~ dmnorm(0,0.001)
  beta[4] ~ dmnorm(0,0.001)
  beta[5] ~ dmnorm(0,0.001)
  beta[6] ~ dmnorm(0,0.001)
  beta[7] ~ dmnorm(0,0.001)
  beta[8] ~ dmnorm(0,0.001)
  beta0 ~ dnorm(0,0.001) 
  prec.tau2 ~dgamma(0.001,0.001) #hyperparameter priors
  tau <- sqrt(1/prec.tau2)
}", con="Multi.logit.jag")

y <- Vars$fix

x1 <-  Vars$h_polcon3

x2 <- Vars$imf_infl

x3 <- Vars$imf_ue

x4 <- Vars$imf_gd

x5 <- Vars$wdi_trade

x6 <- Vars$dr_eg

x7 <- Vars$wdi_gdppcgr

x8 <- Vars$dpi_erlc

N <- 607

country <- Vars$cname #specify levels
country <- as.factor(country)
nlevels(country) #Sample consists of 42 countries
country <- as.numeric(country) #transfer factor variabel to numeric variable in order to make model run
n <- 42

M.data.multi <-list('N'=N, 'n'= n, 'y'=y, 'country' = country, 'x1'=x1, 'x2'=x2, 'x3'=x3, 'x4'=x4, 'x5'=x5, 'x6'=x6, 'x7'=x7, 'x8'=x8)

library(coda)
library(rjags)
library(R2jags)
M.sim.multi <- jags(data=M.data.multi, parameters.to.save="beta", model.file="Multi.logit.jag", n.chains=3, n.iter=2000, n.burnin=500)
print(M.sim.multi)

和收益

Inference for Bugs model at "Multi.logit.jag", fit using jags,
 3 chains, each with 2000 iterations (first 500 discarded)
 n.sims = 4500 iterations saved
         mu.vect sd.vect    2.5%     25%     50%     75%   97.5%  Rhat n.eff
beta[1]    1.049   2.202  -3.081  -0.484   1.097   2.520   5.844 1.782     6
beta[2]    0.004   0.011  -0.017  -0.001   0.005   0.011   0.026 1.437     8
beta[3]    0.165   0.065   0.034   0.118   0.171   0.213   0.286 1.039    85
beta[4]   -0.035   0.011  -0.061  -0.042  -0.033  -0.027  -0.016 1.191    15
beta[5]    0.060   0.015   0.030   0.048   0.060   0.070   0.086 1.411     9
beta[6]    0.071   0.027   0.012   0.048   0.075   0.094   0.110 1.187    16
beta[7]   -0.140   0.053  -0.243  -0.178  -0.138  -0.105  -0.039 1.072    33
beta[8]   -0.037   0.186  -0.392  -0.171  -0.036   0.092   0.348 1.125    21
deviance 332.333   9.250 316.568 325.541 331.423 337.914 352.942 1.014   150

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 42.2 and DIC = 374.6
DIC is an estimate of expected predictive error (lower deviance is better).

glmer()模型如下:

library(Matrix)
library(lme4)
library(ggplot2)
library(lmerTest)

Multi.freq <- glmer(fix ~ h_polcon3 + imf_infl + imf_ue + imf_gd + wdi_trade + dr_eg + wdi_gdppcgr + dpi_erlc + (1 | cname), family = binomial(link="logit"), data=Vars)
Multi.freq

和收益

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
 Family: binomial  ( logit )
Formula: fix ~ h_polcon3 + imf_infl + imf_ue + imf_gd + wdi_trade + dr_eg +  
    wdi_gdppcgr + dpi_erlc + (1 | cname)
   Data: Vars
Control: glmerControl(optCtrl = list(maxfun = 20000))

     AIC      BIC   logLik deviance df.resid 
   446.6    490.7   -213.3    426.6      597 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5707 -0.2023  0.0056  0.2251  6.7237 

Random effects:
 Groups Name        Variance Std.Dev.
 cname  (Intercept) 16.92    4.113   
Number of obs: 607, groups:  cname, 42

Fixed effects:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -10.640232   2.362286  -4.504 6.66e-06 ***
h_polcon3     1.025333   1.839488   0.557  0.57725    
imf_infl      0.004985   0.010386   0.480  0.63129    
imf_ue        0.183076   0.072181   2.536  0.01120 *  
imf_gd       -0.031592   0.011738  -2.692  0.00711 ** 
wdi_trade     0.048175   0.016842   2.860  0.00423 ** 
dr_eg         0.092837   0.029145   3.185  0.00145 ** 
wdi_gdppcgr  -0.118344   0.049786  -2.377  0.01745 *  
dpi_erlc     -0.100724   0.183591  -0.549  0.58326    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) h_plc3 imf_nf imf_ue imf_gd wd_trd dr_eg  wd_gdp
h_polcon3   -0.366                                                 
imf_infl    -0.077  0.104                                          
imf_ue      -0.346 -0.076  0.265                                   
imf_gd       0.052 -0.017 -0.214 -0.507                            
wdi_trade   -0.238  0.099 -0.193  0.193 -0.285                     
dr_eg       -0.585 -0.068 -0.304  0.038  0.043 -0.282              
wdi_gdppcgr  0.039 -0.109  0.157  0.040  0.123 -0.295  0.024       
dpi_erlc    -0.163  0.151 -0.216 -0.005  0.017  0.156 -0.033 -0.122

因此我怀疑在设置数据时我犯了一个错误。谁能告诉我我做错了什么?

更新

我尝试了另一种更简单的方法(删除e.obs),但是,对于贝叶斯和包估计器,我仍然会得到不同的结果:

b1.true <- 2.5 #individual level predictor coefficient
b2.true <- 1.75

mu.a.true <- 0.5
sigma.a.true <- 1.25 #among group variance

#Simulating the varying coefficients
J <- 10 #50 groups
u <- rnorm(J,0, 3) #group level predictor variable 
a.true <- rep (NA, J)
for (j in 1:J){
  a.true[j] <- rnorm (1, mu.a.true, sigma.a.true)
}

n <- 50 #number of observations
#set.seed(666)
country <- rep(1:J, n)
x1 <- rnorm(n) #individual level predictor variable
x2 <- rnorm(n)

y <- rep (NA, n) #dependent variable

for (i in 1:n){
  y[i] <- rbinom(n, 1, 1/(1+exp(-(a.true[country[i]] + b1.true*x1[i] + b2.true*x2[i]))))
}#prob. of the dependent variable described by a linear combination of covariates and country-specific intercepts 

#for (i in 1:n){
  #y[i] <- rnorm(1, a.true[country[i]] + b.true*x[i], sigma.y.true)
#}

Test <- data.frame(country, x1, x2, y)

#Apply Bayesian estimator to Test dataset

writeLines("
           model{
           for (i in 1:N){
           y[i] ~ dbin(p.bound[i], 1)
           p.bound[i] <- max(0, min(1, p[i]))
           logit(p[i]) <- Xbeta[i]  #likelihood
           Xbeta[i] <- beta0 + beta[1]*x1[i] +beta[2]*x2[i] + v[country[i]] 
           } #linear combination
           beta0 ~ dnorm(0,0.001) 
           beta[1] ~ dnorm(0,0.001) #IV priors
           beta[2] ~ dnorm(0,0.001)
           for (j in 1:n){
           v[j] ~ dnorm(mu.country, tau.country) #country-specific intercept
           }
           mu.country ~ dnorm(0,0.001) 
           tau.country <- pow(sigma.country, -2) #hyperparameter priors
           sigma.country ~ dunif(0, 100)
           }", con="Multi.logit.jag")

y <- Test$y

x1 <-  Test$x1

x2 <- Test$x2

N <- 500

country <- Test$country #specify levels
country <- as.factor(country)
nlevels(country) #10 groups
country <- as.numeric(country) #transfer factor variabel to numeric variable in order to make model run
n <- 10

M.data.test <-list('N'=N, 'n'= n, 'y'=y, 'country' = country, 'x1'=x1, 'x2'=x2)

library(coda)
library(rjags)
library(R2jags)
M.test <- jags(data=M.data.test, parameters.to.save="beta", model.file="Multi.logit.jag", n.chains=3, n.iter=2000, n.burnin=500)
print(M.test)

结果仍有偏见:

Inference for Bugs model at "Multi.logit.jag", fit using jags,
 3 chains, each with 2000 iterations (first 500 discarded)
 n.sims = 4500 iterations saved
         mu.vect sd.vect    2.5%     25%     50%     75%   97.5%  Rhat n.eff
beta[1]    3.901   0.524   2.938   3.530   3.859   4.256   5.008 1.008   280
beta[2]    1.575   0.245   1.121   1.402   1.570   1.736   2.078 1.002  1500
deviance 273.741   4.814 266.316 270.207 273.118 276.595 284.787 1.002  2100

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 11.6 and DIC = 285.3
DIC is an estimate of expected predictive error (lower deviance is better).

lme4:

相同
#Test with package

library(Matrix)
library(lme4)
library(ggplot2)
library(lmerTest)

Multi.freq <- glmer(y ~ x1 + x2 + (1 | country), family = binomial(link="logit"), data=Test, glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
summary(Multi.freq)

结果:

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [
glmerMod]
 Family: binomial  ( logit )
Formula: y ~ x1 + x2 + (1 | country)
   Data: Test
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

     AIC      BIC   logLik deviance df.resid 
   311.7    328.6   -151.9    303.7      496 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.00320 -0.18842 -0.01074  0.26742  2.08614 

Random effects:
 Groups  Name        Variance Std.Dev.
 country (Intercept) 6.721    2.593   
Number of obs: 500, groups:  country, 10

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)   0.1587     0.8481   0.187    0.852    
x1            3.7344     0.5011   7.452 9.22e-14 ***
x2            1.5496     0.2422   6.397 1.58e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
   (Intr) x1   
x1 0.049       
x2 0.022  0.174

0 个答案:

没有答案
相关问题