为什么FCN32输出是黑色图像(所有像素都为零值)?

时间:2017-01-14 15:34:51

标签: python-2.7 deep-learning caffe pycaffe deeplearning4j

我正在尝试从FCN 32获取输出。我使用pascalcontext-fcn32-heavy.caffemodel预训练模型训练了FCN32。我可以运行5个类的灰度图像。但是,在推理期间,输出全为零(黑色图像)。这是推理代码:

import numpy as np
from PIL import Image
import sys
import scipy.io as sio
from caffe.proto import caffe_pb2
import caffe
    caffe.set_device(0) 
    caffe.set_mode_gpu()

    # load image, subtract mean, and make dims C x H x W for Caffe

   img_name='/home/ss/caffe-pascalcontext-fcn32s/dataset/Test/PNG/image-061-023.png'    #+
    im = Image.open(img_name)

    in_ = np.array(im, dtype=np.float32)
    in_ = np.expand_dims(in_, axis=0)               #+
    print in_.shape
    #Read mean image
    '''####################'''
    mean_blob = caffe_pb2.BlobProto()
    with open('/home/ss/caffe-pascalcontext-fcn32s/input/FCN32_mean.binaryproto') as f:
        mean_blob.ParseFromString(f.read())
    mean_array = np.asarray(mean_blob.data, dtype=np.float32).reshape(
        (mean_blob.channels, mean_blob.height, mean_blob.width))
    in_ -= mean_array

    net_root = '/home/ss/caffe-pascalcontext-fcn32s'

    MODEL_DEF = net_root + '/deploy.prototxt'
    PRETRAINED = net_root + '/snapshot/FCN32s_train_iter_40000.caffemodel'
    # load net
    #net = caffe.Net('deploy.prototxt', 'snapshot/train_iter_640000.caffemodel', caffe.TEST)
    net = caffe.Net(MODEL_DEF,PRETRAINED, caffe.TEST)
    #net = caffe.Net('deploy.prototxt', 'snapshot_bak1/train_iter_400000.caffemodel', caffe.TEST)

    # shape for input (data blob is N x C x H x W), set data
    # put img to net
    net.blobs['data'].reshape(1, *in_.shape)  # 1: batch size, *in_.shape 3 channel ?
    net.blobs['data'].data[...] = in_

    # run net and take argmax for prediction
    output = net.forward()

    # print
    def print_param(output):
        # the blobs
        print '--------------------------'
        print 'the blobs'
        for k, v in net.blobs.items():
            print k, v.data.shape

        # the parameters
        print '--------------------------'
        print 'the paramsters'
        for k, v in net.params.items():
            print k, v[0].data.shape

        # the conv layer weights
        print '--------------------------'
        print 'the conv layer weights'
        print net.params['conv1_1'][0].data

        # the data blob 
        print '--------------------------'
        print 'the data blob'
        print net.blobs['data'].data

        # the conv1_1 blob
        print '--------------------------'
        print 'the conv1_1 blob'
        print net.blobs['conv1_1'].data

        # the pool1 blob
        print '--------------------------'
        print 'the pool1 blob'
        print net.blobs['pool1'].data

        weights = net.blobs['fc6'].data[0]
        print 'blobs fc6'
        print np.unique(weights)
        weights = net.blobs['fc7'].data[0]
        print 'blobs fc7'
        print np.unique(weights)
        weights = net.blobs['score_fr_sign'].data[0]
        print 'blobs score_fr_sign'
        print np.unique(weights)
        weights = net.blobs['upscore_sign'].data[0]
        print 'blobs upscore_sign'
        print np.unique(weights)
        weights = net.blobs['score'].data[0]
            print weights.shape             #+
            sio.savemat('scores.mat',{'weights':weights})   #+
        print 'blobs score'
        print np.unique(weights)

    print_param(output)

    out = net.blobs['score'].data[0].argmax(axis=0)
    print out           #+

    #np.savetxt("vote", out, fmt="%02d")
    np.savetxt("vote", out, fmt="%d")

    print im.height
    print im.width
    print out.shape, len(out.shape)

    def array2img(out):
        out1 = np.array(out, np.unit8)
        img = Image.fromarray(out1,'L')
        for x in range(img.size[0]):
            for y in range(img.size[1]):
                if not img.getpixel((x, y)) == 0:
                    print 'PLz', str(img.getpixel((x, y)))

        img.show()


    def show_pred_img(file_name):
        file = open(file_name, 'r')
        lines = file.read().split('\n')

        #img_name = str(sys.argv[1])
        im = Image.open(img_name)
        im_pixel = im.load()

        img = Image.new('RGB', im.size, "black")
        pixels = img.load()

        w, h = 0, 0
        for l in lines:
            w = 0
            if len(l) > 0:
                word = l.split(' ')
                for x in word:
                    if int(x) == 1:
                        pixels[w, h] = im_pixel[w, h]
                    w += 1
                h += 1
        print im.size
        #img.show()
        img.save(img_name+'_result.png')
    show_pred_img('vote')

这是推理的日志信息:

the blobs
data (1, 1, 256, 256)
data_input_0_split_0 (1, 1, 256, 256)
data_input_0_split_1 (1, 1, 256, 256)
conv1_1 (1, 64, 454, 454)
conv1_2 (1, 64, 454, 454)
pool1 (1, 64, 227, 227)
conv2_1 (1, 128, 227, 227)
conv2_2 (1, 128, 227, 227)
pool2 (1, 128, 114, 114)
conv3_1 (1, 256, 114, 114)
conv3_2 (1, 256, 114, 114)
conv3_3 (1, 256, 114, 114)
pool3 (1, 256, 57, 57)
conv4_1 (1, 512, 57, 57)
conv4_2 (1, 512, 57, 57)
conv4_3 (1, 512, 57, 57)
pool4 (1, 512, 29, 29)
conv5_1 (1, 512, 29, 29)
conv5_2 (1, 512, 29, 29)
conv5_3 (1, 512, 29, 29)
pool5 (1, 512, 15, 15)
fc6 (1, 4096, 9, 9)
fc7 (1, 4096, 9, 9)
score_fr_sign (1, 5, 9, 9)
upscore_sign (1, 5, 320, 320)
score (1, 5, 256, 256)
--------------------------
the paramsters
conv1_1 (64, 1, 3, 3)
conv1_2 (64, 64, 3, 3)
conv2_1 (128, 64, 3, 3)
conv2_2 (128, 128, 3, 3)
conv3_1 (256, 128, 3, 3)
conv3_2 (256, 256, 3, 3)
conv3_3 (256, 256, 3, 3)
conv4_1 (512, 256, 3, 3)
conv4_2 (512, 512, 3, 3)
conv4_3 (512, 512, 3, 3)
conv5_1 (512, 512, 3, 3)
conv5_2 (512, 512, 3, 3)
conv5_3 (512, 512, 3, 3)
fc6 (4096, 512, 7, 7)
fc7 (4096, 4096, 1, 1)
score_fr_sign (5, 4096, 1, 1)
upscore_sign (5, 1, 64, 64)
--------------------------
the conv layer weights
[[[[ 0.  0.  0.]
   [ 0.  0.  0.]
   [ 0.  0.  0.]]]

...
 .
 .
 .       

 [[[ 0.  0.  0.]
   [ 0.  0.  0.]
   [ 0.  0.  0.]]]]
--------------------------
the data blob
[[[[ 29.32040787  20.31391525  20.30148506 ...,  10.41113186  11.42486095
      6.42949915]
   [ 33.32374954  21.31280136  22.30037117 ...,   9.40779209  10.42189217
      8.43079758]
   [ 36.32300568  25.30816269  25.29183578 ...,  10.40148449  11.41818142
     10.42838573]
   ..., 
   [ 34.64990616  31.65658569  30.65714264 ...,   4.           2.99981451
      0.99962896]
   [ 39.65788651  33.65769958  29.65974045 ...,   5.99981451   4.99944353
      0.99888682]
   [ 41.6641922   34.66493607  30.66567802 ...,   5.99962902   2.99907231
      3.99833035]]]]
--------------------------
the conv1_1 blob
[[[[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  ..., 
  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]]]
--------------------------
the pool1 blob
[[[[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  ..., 
  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]

  [[ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   ..., 
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]
   [ 0.  0.  0. ...,  0.  0.  0.]]]]
blobs fc6
[ 0.]
blobs fc7
[ 0.]
blobs score_fr_sign
[-1.61920226 -1.34294271  0.07809996  0.60521388  2.2788291 ]
blobs upscore_sign
[-1.61920238 -1.61920226 -1.61920214 ...,  2.27882886  2.2788291
  2.27882934]
(5, 256, 256)
blobs score
[-1.61920238 -1.61920226 -1.61920214 -1.59390223 -1.59390211 -1.5689975
 -1.54330218 -1.54330206 -1.51918805 -1.49270213 -1.49270201 -1.4709599
 -1.46937859 -1.44210207 -1.44210196 -1.42273164 -1.41956913 -1.39150202
 -1.3915019  -1.37608469 -1.37450349 -1.36975968 -1.34294283 -1.34294271
 -1.3429426  -1.34090197 -1.34090185 -1.32943773 -1.32627523 -1.32195926
 -1.31995022 -1.30130363 -1.2903018  -1.28437209 -1.2827909  -1.27999234
 -1.27999222 -1.27804708 -1.27014089 -1.25999236 -1.23970175 -1.23930645
 -1.23802543 -1.23802531 -1.23614395 -1.22981894 -1.22033143 -1.21999264
 -1.21868122 -1.19605839 -1.19605827 -1.195822   -1.19424069 -1.18949699
 -1.1891017  -1.18910158 -1.18159068 -1.17999291 -1.17736995 -1.17052197
 -1.15409136 -1.15233755 -1.14917505 -1.14285004 -1.14130461 -1.13999307
 -1.13850164 -1.13850152 -1.13605869 -1.13336253 -1.12071252 -1.11212444
 -1.11043441 -1.1088531  -1.10410941 -1.10261631 -1.09999335 -1.09620309
 -1.09474754 -1.08790159 -1.08790147 -1.08513427 -1.07090306 -1.07015753
 -1.07015741 -1.06853116 -1.06536865 -1.06523943 -1.06392801 -1.05999362
 -1.05904365 -1.05343628 -1.04955614 -1.03730154 -1.03730142 -1.03690612
 -1.02820921 -1.02819049 -1.02786267 -1.02662802 -1.02523971 -1.0218842
 -1.02109361 -1.0199939  -1.013978   -1.01212502 -1.00290918 -0.99179727
 -0.99048585 -0.98867792 -0.98788732 -0.98670143 -0.98670137 -0.9865514
 -0.98622358 -0.98622352 -0.98472482 -0.97999406 -0.97839981 -0.97128415
 -0.97081381 -0.9689123  -0.95626229 -0.95573193 -0.95310903 -0.94914663
 -0.94786316 -0.94756538 -0.9442566  -0.94425654 -0.94282162 -0.94044977
 -0.93999434 -0.93491536 -0.92950261 -0.9238466  -0.92097807 -0.91966659
 -0.9157322  -0.91040593 -0.90961534 -0.90917486 -0.90724343 -0.90228963
 -0.90091842 -0.89999455 -0.89143091 -0.88819134 -0.88622415 -0.88360125
 -0.8787809  -0.87835538 -0.87324655 -0.8716653  -0.87048656 -0.86692154
 -0.86032271 -0.86032265 -0.85999483 -0.85901529 -0.85278171 -0.85147029
 -0.84794647 -0.84753585 -0.84688014 -0.8409785  -0.83608711 -0.8329246
 -0.83179826 -0.8265996  -0.81999505 -0.81933933 -0.81835574 -0.81835568
 -0.81711209 -0.81671637 -0.81147051 -0.80556893 -0.80360168 -0.80050892
 -0.79892766 -0.79418391 -0.79310995 -0.78720838 -0.78627765 -0.7858969
 -0.78196251 -0.77999532 -0.77540517 -0.76622486 -0.76493073 -0.76176822
 -0.75544322 -0.75507742 -0.75442165 -0.75245446 -0.7472086  -0.73933983
 -0.73093385 -0.72935259 -0.72884804 -0.72460884 -0.72425795 -0.72294647
 -0.71901208 -0.71245474 -0.70327443 -0.69693691 -0.6937744  -0.69343841
 -0.69081551 -0.68556964 -0.67770082 -0.66452122 -0.66393042 -0.66293997
 -0.66261894 -0.65868455 -0.65212721 -0.63442242 -0.63210559 -0.63179946
 -0.6265536  -0.60622585 -0.60491437 -0.60127115 -0.60097998 -0.57802927
 -0.57540637 -0.55114424 -0.54983276 -0.52425915 -0.49868551  0.02900147
  0.03048873  0.03197598  0.03205225  0.03346324  0.03361578  0.03495049
  0.0351793   0.03525557  0.03643775  0.03674283  0.03689536  0.037925
  0.03830635  0.03853516  0.03861143  0.03941226  0.03986987  0.04017495
  0.04032749  0.04089952  0.0414334   0.04181475  0.04204356  0.04211983
  0.04238677  0.04299692  0.04345454  0.04375962  0.04387403  0.04391216
  0.04456045  0.04509434  0.04536128  0.04547568  0.04570449  0.04578076
  0.04612397  0.04673413  0.04684854  0.04719175  0.04749683  0.04759216
  0.04764936  0.0476875   0.04837392  0.04890781  0.04925102  0.04928916
  0.04951797  0.04959423  0.05001372  0.05003278  0.05003279  0.05062388
  0.05108149  0.05138657  0.05153911  0.05165351  0.05233994  0.05247341
  0.05247341  0.05287382  0.05325517  0.05348398  0.05356025  0.054056
  0.05466616  0.05491403  0.05491403  0.05512378  0.05542885  0.05558139
  0.05645849  0.05699238  0.05735466  0.05735466  0.05737372  0.05760253
  0.0576788   0.05886098  0.05931859  0.05962367  0.05977621  0.05979528
  0.05979528  0.06126347  0.06164481  0.06187363  0.06194989  0.0622359
  0.06223591  0.06366596  0.06397104  0.06412357  0.06467653  0.06606845
  0.06629726  0.06637353  0.06711715  0.06847093  0.06862348  0.06955777
  0.06955778  0.07087342  0.0709497   0.0719984   0.0719984   0.07327592
  0.07443902  0.07443903  0.0756784   0.07687964  0.07687965  0.07809995
  0.07809996  0.07809997  0.22473885  0.23626392  0.24778898  0.24838002
  0.25931406  0.26049611  0.27083912  0.27261221  0.27320322  0.28236419
  0.28472832  0.28591037  0.29388925  0.29684439  0.29861748  0.29920852
  0.30541432  0.3089605   0.31132463  0.31250668  0.31693938  0.3210766
  0.32403174  0.32580483  0.32639587  0.32846448  0.33319271  0.33673888
  0.33910298  0.33998954  0.34028506  0.34530881  0.349446    0.35151461
  0.35240114  0.35417423  0.35476527  0.35742489  0.36215314  0.36303967
  0.36569929  0.36806342  0.36880219  0.36880222  0.36924547  0.36954099
  0.37486026  0.37899747  0.38165709  0.38195261  0.3837257   0.38431671
  0.38756737  0.38771513  0.38771516  0.39229563  0.39584181  0.39820591
  0.39938796  0.40027452  0.40559378  0.40662807  0.40973097  0.41268614
  0.4144592   0.41505024  0.41889194  0.42362016  0.42554098  0.42554101
  0.42716634  0.42953047  0.43071252  0.43750936  0.44164655  0.44445392
  0.44445395  0.44460171  0.44637477  0.44696581  0.45612678  0.45967296
  0.46203706  0.46321911  0.46336687  0.4633669   0.4747442   0.47769934
  0.47947243  0.48006344  0.48227981  0.48227984  0.49336162  0.49572572
  0.49690777  0.50119275  0.51197904  0.5137521   0.51434314  0.52010566
  0.52010572  0.53059644  0.53177851  0.53901857  0.53901863  0.54921389
  0.54980487  0.55793154  0.56783128  0.57684445  0.57684451  0.58644873
  0.59575737  0.59575742  0.60521382  0.60521388  0.60521394  0.84621561
  0.88961124  0.93300694  0.93523234  0.97640258  0.98085344  1.01979828
  1.02647448  1.02869999  1.06319392  1.07209563  1.07654643  1.10658967
  1.11771667  1.12439299  1.12661839  1.14998531  1.16333783  1.17223942
  1.17669034  1.19338095  1.20895886  1.22008598  1.22676229  1.22898769
  1.23677659  1.25458002  1.26793253  1.27683413  1.28017235  1.28128505
  1.30020106  1.31577897  1.32356799  1.32690609  1.3335824   1.3358078
  1.34582222  1.36362553  1.36696362  1.37697804  1.38587976  1.38866138
  1.3886615   1.39033055  1.39144325  1.41147208  1.42704999  1.43706429
  1.43817711  1.44485331  1.4470787   1.45931852  1.45987487  1.45987499
  1.47712183  1.49047434  1.49937606  1.50382698  1.50716507  1.52719378
  1.53108823  1.53108835  1.5427717   1.55389881  1.56057513  1.56280053
  1.57726574  1.59506905  1.6023016   1.60230172  1.60842156  1.61732328
  1.62177408  1.6473664   1.66294444  1.67351508  1.6735152   1.67407143
  1.68074775  1.68297315  1.71746719  1.7308197   1.7397213   1.74417222
  1.74472845  1.74472857  1.78756785  1.79869497  1.80537117  1.80759656
  1.81594181  1.81594193  1.81594205  1.85766852  1.86657023  1.87102103
  1.88715529  1.88715541  1.9277693   1.9344455   1.9366709   1.95836878
  1.99786997  2.00232077  2.02958202  2.02958226  2.06797075  2.07019615
  2.10079551  2.10079575  2.1380713   2.17200899  2.20817208  2.24322224
  2.24322248  2.27882886  2.2788291   2.27882934]
256
256
(256, 256) 2
(256, 256)

我有两个主要问题:

  1. 我想知道为什么输出是黑色的?和
  2. 我怎么知道何时停止运行算法(即迭代 数)?我真的不知道什么是最佳迭代次数和 我可以在那个阶段停止微调的损失值。我停下了 在40,000 iterations进行培训,我对此一无所知。
  3. 分割结果是否必须是灰度图像 同样(如输入),或创建RGB结果图像不做任何 产量差异?
  4. 我真的不知道我有多么正确的做法。相当混乱:( 有没有人有任何建议?我非常感谢你的帮助。

2 个答案:

答案 0 :(得分:0)

确保您的标签'数据类型是uint8!我遇到了同样的问题!

在训练之前,还要确保你的原型文件中有如下所示的重量填充物!

> --CODE 2
>     INSERT INTO @V_ColumnDefinition(FieldValue)
>     EXECUTE(@V_DynamicStatment)



-- CODE 1
    INSERT INTO @V_ColumnDefinition(FieldValue)--add primary key constraint to definition table
         SELECT CHAR (10) + CASE WHEN A1.name IS NOT NULL THEN ' CONSTRAINT  ['+ A1.name+' ] ' ELSE '' END  +
         CASE WHEN A1.name IS NOT NULL AND A2.type_desc='CLUSTERED' AND A1.name=A2.name THEN 'PRIMARY KEY CLUSTERED' ELSE 'PRIMARY KEY NONCLUSTERED' END 
          +'(' + CHAR(10)+'[' + CASE WHEN A1.name=A3.CONSTRAINT_NAME THEN COLUMN_NAME END  +' ]' +')'
         FROM SYS.OBJECTS A1 LEFT JOIN  SYS.INDEXES A2 ON A1.object_id=A2.Object_id
         LEFT JOIN INFORMATION_SCHEMA.KEY_COLUMN_USAGE A3 ON A1.NAME=A3.CONSTRAINT_NAME
         WHERE A1.TYPE = 'PK' AND parent_object_id = OBJECT_ID (@P_TableName) 
祝你好运!

答案 1 :(得分:0)

是的,通常取决于你的图像尺寸!你检查过你的数据类型了吗?你的图像和groundtruth都应该是uint8!

您还要将“group”行添加到Deconv图层吗?

最佳